To investigate the relationship between intracellular free Ca^2+ concentration ([Ca^2+ ]i ) and calcium-activated chloride (Clca) channels of pulmonary artery smooth muscle cells (PASMCs) in rats under acute a...To investigate the relationship between intracellular free Ca^2+ concentration ([Ca^2+ ]i ) and calcium-activated chloride (Clca) channels of pulmonary artery smooth muscle cells (PASMCs) in rats under acute and chronic hypoxic conditions, acute hypoxia-induced contraction was observed in rat pulmonary artery by using routine blood vascular perfusion in vitro. The fluorescence Ca^2+ indicator Fura-2/AM was used to observe [Ca^2+ ]i of rat PASMCs under normal and chronic hypoxic condition. The effect of Clca channels on PASMCs proliferation was assessed by MTT assay. The Clca channel blockers niflumic acid (NFA) and indaryloxyacetic acid (IAA-94) exerted inhibitory effects on acute hypoxia-evoked contractions in the pulmonary artery. Under chronic hypoxic condition, [Ca^2+ ]i was increased. Under normoxic condition, [Ca^2+ If was (123.634-18.98) nmol/ L, and in hypoxic condition, [Ca^2+]i wag (281. 754-16.48) nmol/L (P〈0. 01). Under normoxic condition, [Ca^2+ ]i showed no significant change and no effect on Clca channels was observed (P〉 0. 05). Chronic hypoxia increased [Ca^2+ ]i which opened Clca channels. The NFA and IAA-94 blocked the channels and decreased [Ca^2+ ]i from (281.75± 16.48) nmot/L to (117.66 ±15.36) nmol/L (P〈0.01). MTT assay showed that under chronic hypoxic condition NFA and IAA-94 decreased the value of absorbency (A value) from 0. 459±0. 058 to 0. 224±0. 025 (P〈0. 01). Hypoxia increased [Ca^2+ ]i which opened Cl~ channels and had a positive-feedback in [Ca^2+ ]i. This may play an important role in hypoxic pulmonary hypertension. Under chronic hypoxic condition, Clca channel may play a part in the regulation of proliferation of PASMCs.展开更多
AIM: To explore the possibility of using the Noninvasive Micro-test Technique (NMT) to investigate the role of Transient Receptor Potential Canonical 1 (TRPC1) in regulating Ca^2+ influxes in HL-7702 cells, a no...AIM: To explore the possibility of using the Noninvasive Micro-test Technique (NMT) to investigate the role of Transient Receptor Potential Canonical 1 (TRPC1) in regulating Ca^2+ influxes in HL-7702 cells, a normal human liver cell line.METHODS: Net Ca^2+ fluxes were measured with NMT, a technology that can obtain dynamic information of specific/selective ionic/molecular activities on material surfaces, non-invasively. The expression levels of TRPCl were increased by liposomal transfection, whose effectiveness was evaluated by Western-blotting and single cell reverse transcription-polymerase chain reaction.RESULTS: Ca^2+ influxes could be elicited by adding 1 mmol/L CaCl2 to the test solution of HL-7702 cells. They were enhanced by addition of 20 μmol/L noradrenalin and inhibited by 100 μmol/L LaCl3 (a non-selective Ca^2+ channel blocker); 5 μmol/L nifedipine did not induce any change. Overexpression of TRPCl caused increased Ca^2+ influx. Five micromoles per liter nifedipine did not inhibit this elevation, whereas 100 μmol/L LaCI3 did.CONCLUSION: In HL-7702 cells, there is a type of TRPCl-dependent Ca^2+ channel, which could be detected v/a NMT and inhibited by La^3+.展开更多
Intracellular cAMP and Ca^2+ are involved in the regulation of steroidogenic activity in Leydig cells, which coordinate responses to luteinizing hormone (LH) and human ehorionic gonadotropin (hCG). However, the i...Intracellular cAMP and Ca^2+ are involved in the regulation of steroidogenic activity in Leydig cells, which coordinate responses to luteinizing hormone (LH) and human ehorionic gonadotropin (hCG). However, the identification of Ca^2+ entry implicated in Leydig cell steroidogenesis is not well defined. The objective of this study was to identify the type of Ca^2+ channel that affects Leydig cell steroidogenesis. In vitro steroidogenesis in the freshly dissociated Leydig cells of mice was induced by hCG incubation. The effects of mibefradil (a putative T-type Ca^2+ channel blocker) on steroidogenesis were assessed using reverse transcription (RT)-polymerase chain reaction analysis for the steroidogenic acute regulatory protein (STAR) mRNA expression and testosterone production using radioimmunoassay. In the presence of 1.0 mmol L-1 extracellular Ca^2+, hCG at 1 to 100 IU noticeably elevated both StAR mRNA level and testosterone secretion (P 〈 0.05), and the stimulatory effects of hCG were markedly diminished by mibefradil in a dose-dependent manner (P 〈 0.05). Moreover; the hCG-induced increase in testosterone production was completely removed when external Ca^2+ was omitted, implying that Ca entry is needed for hCG-induced steroidogenesis. Furthermore, a patch-clamp study revealed the presence of mibefradil-sensitive Ca^24- currents seen at a concentration range that nearly paralleled those inhibiting steroidogenesis. Collectively, Our data provide evidence that hCG-stimulated steroidogenesis is mediated at least in part by Ca^2+ entry carried out by the T-type Ca^2+ channel in the Leydig cells of mice.展开更多
Objective: To observe the effect of the serum containing Chengzai Pill on the L-type voltage-sensitive calcium channels current (L-VSCCsC) of osteoblastic MC3T3-E1 cells pretreated with methylprednisolone (mPSL). Meth...Objective: To observe the effect of the serum containing Chengzai Pill on the L-type voltage-sensitive calcium channels current (L-VSCCsC) of osteoblastic MC3T3-E1 cells pretreated with methylprednisolone (mPSL). Methods: A control group, a model group, a low dose group and a high dose group were set up. The whole cell patch clamp technique was used to record L-VSCCsC of 10 osteoblastic MC3T3-E1 cells in each group and their peak currents were determined. Results: The peak current of the control group was 0.2284±0.0209 nA; the peak current of the model group was 0.1839±0.0179 nA; decreased by 19.5% as compared with the control group (P<0.01); the peak current of the low and high dose groups was 0.2526± 0.0093 nA and 0.2671±0.0120 nA respectively, increased by 37.4% and 45.2% as compared with the model group (P<0.01); the difference between the low and high dose groups was P<0.05. Conclusion: 1. mPSL inhibits L-VSCCsC of osteoblasts; and 2. The serum containing Chengzai Pill increases L-VSCCsC of osteoblasts pretreated with mPSL.展开更多
Saldigones A-C(1,3,4),three new isoprenylated flavonoids with diverse flavanone,pterocarpan,and isoflavanone architec-tures,were characterized from the roots of Salvia digitaloides,together with a known isoprenylated ...Saldigones A-C(1,3,4),three new isoprenylated flavonoids with diverse flavanone,pterocarpan,and isoflavanone architec-tures,were characterized from the roots of Salvia digitaloides,together with a known isoprenylated flavanone(2).Notably,it’s the first report of isoprenylated flavonoids from Salvia species.The structures of these isolates were elucidated by extensive spectroscopic analysis.All of the compounds were evaluated for their activities on Cav3.1 low voltage-gated Ca^(2+)channel(LVGCC),of which 2 strongly and dose-dependently inhibited Cav3.1 peak current.展开更多
Calcium ions(Ca^(2+)) are crucial intracellular second messengers in eukaryotic cells. Upon pathogen perception, plants generate a transient and rapid increase in cytoplasmic Ca^(2+)levels, which is subsequently decod...Calcium ions(Ca^(2+)) are crucial intracellular second messengers in eukaryotic cells. Upon pathogen perception, plants generate a transient and rapid increase in cytoplasmic Ca^(2+)levels, which is subsequently decoded by Ca^(2+)sensors and effectors to activate downstream immune responses. The elevation of cytosolic Ca^(2+)is commonly attributed to Ca^(2+)influx mediated by plasma membranelocalized Ca^(2+)–permeable channels. However, the contribution of Ca^(2+)release triggered by intracellular Ca^(2+)-permeable channels in shaping Ca^(2+)signaling associated with plant immunity remains poorly understood. This review discusses recent advances in understanding the mechanism underlying the shaping of Ca^(2+)signatures upon the activation of immune receptors, with particular emphasis on the identification of intracellular immune receptors as non-canonical Ca^(2+)-permeable channels. We also discuss the involvement of Ca^(2+)release from the endoplasmic reticulum in generating Ca^(2+)signaling during plant immunity.展开更多
The Na^+/Ca^(2+) exchanger(NCX) protein family is a part of the cation/Ca^(2+) exchanger superfamily and participates in the regulation of cellular Ca^(2+) homeostasis. NCX1, the most important subtype in the NCX fami...The Na^+/Ca^(2+) exchanger(NCX) protein family is a part of the cation/Ca^(2+) exchanger superfamily and participates in the regulation of cellular Ca^(2+) homeostasis. NCX1, the most important subtype in the NCX family, is expressed widely in various organs and tissues in mammals and plays an especially important role in the physiological and pathological processes of nerves and the cardiovascular system. In the past few years, the function of NCX1 in the digestive system has received increasing attention; NCX1 not only participates in the healing process of gastric ulcer and gastric mucosal injury but also mediates the development of digestive cancer, acute pancreatitis, and intestinal absorption.This review aims to explore the roles of NCX1 in digestive system physiology and pathophysiology in order to guide clinical treatments.展开更多
A large amount of evidence has supported a clinical link between diabetes and inflammatory diseases,e.g.,cancer,dementia,and hypertension.In addition,it is also suggested that dysregulations related to Ca^(2+)signalin...A large amount of evidence has supported a clinical link between diabetes and inflammatory diseases,e.g.,cancer,dementia,and hypertension.In addition,it is also suggested that dysregulations related to Ca^(2+)signaling could link these diseases,in addition to 3'-5'-cyclic adenosine monophosphate(cAMP)signaling pathways.Thus,revealing this interplay between diabetes and inflammatory diseases may provide novel insights into the pathogenesis of these diseases.Publications involving signaling pathways related to Ca^(2+)and cAMP,inflammation,diabetes,dementia,cancer,and hypertension(alone or combined)were collected by searching PubMed and EMBASE.Both signaling pathways,Ca^(2+)and cAMP signaling,control the release of neurotransmitters and hormones,in addition to neurodegeneration,and tumor growth.Furthermore,there is a clear relationship between Ca^(2+)signaling,e.g.,increased Ca^(2+)signals,and inflammatory responses.cAMP also regulates pro-and anti-inflammatory responses.Due to the experience of our group in this field,this article discusses the role of Ca^(2+)and cAMP signaling in the correlation between diabetes and inflammatory diseases,including its pharmacological implications.As a novelty,this article also includes:(1)A timeline of the major events in Ca^(2+)/cAMP signaling;and(2)As coronavirus disease 2019(COVID-19)is an emerging and rapidly evolving situation,this article also discusses recent reports on the role of Ca^(2+)channel blockers for preventing Ca^(2+)signaling disruption due to COVID-19,including the correlation between COVID-19 and diabetes.展开更多
Heavy alcohol consumption is associated with an increased risk of erectile dysfunction (ED); however, the acute effects of ethanol (EtOH) on penile tissue are not fully understood. We sought to investigate the eff...Heavy alcohol consumption is associated with an increased risk of erectile dysfunction (ED); however, the acute effects of ethanol (EtOH) on penile tissue are not fully understood. We sought to investigate the effects of EtOH on corporal tissue tonicity, as well as the intracellular Ca^2+ concentration ([Ca^2+]i) and potassium channel activity of corporal smooth muscle. Strips of corpus cavernosum (CC) from rabbits were mounted in organ baths for isometric tension studies. Electrical field stimulation (EFS) was applied to strips precontracted with 10 μmol L^-1 phenylephrine as a control. EtOH was then added to the organ bath and incubated before EFS. The [Ca^2+]i levels were monitored by the ratio of fura-2 fluorescence intensities using the fura-2 loading method. Single-channel and whole-cell currents were recorded by the conventional patch-clamp technique in short-term cultured smooth muscle cells from human CC tissue. The corpus cavernosal relaxant response of EFS was decreased in proportion to the concentration of EtOH. EtOH induced a sustained increase in [Ca^2+]i in a dose-dependent manner, Extracellular application of EtOH significantly increased whole-cell K^+ currents in a concentration-dependent manner (P 〈 0.05). EtOH also increased the open probability in cell-attached patches; however, in inside-out patches, the application of EtOH to the intracellular aspect of the patches induced slight inhibition of Ca^2+-activated potassium channel (KCa) activity. EtOH caused a dose-dependent increase in cavemosal tension by alterations to [Ca^2+]i. Although EtOH did not affect KCa channels directly, it increased the channel activity by increasing [Ca^2+]i. The increased corpus cavemosal tone caused by EtOH might be one of the mechanisms of ED after heavy drinking.展开更多
The present study attempted to test a novel hypothesis that Ca^2+ sparks play an important role in arterial relaxation induced by tacrolimus. Recorded with confocal laser scanning microscopy, tacrolimus(10 μmol/L)...The present study attempted to test a novel hypothesis that Ca^2+ sparks play an important role in arterial relaxation induced by tacrolimus. Recorded with confocal laser scanning microscopy, tacrolimus(10 μmol/L) increased the frequency of Ca^2+ sparks, which could be reversed by ryanodine(10 μmol/L). Electrophysiological experiments revealed that tacrolimus(10 μmol/L) increased the large-conductance Ca^2+-activated K+ currents(BKCa) in rat aortic vascular smooth muscle cells(AVSMCs), which could be blocked by ryanodine(10 μmol/L). Furthermore, tacrolimus(10 and 50 μmol/L) reduced the contractile force induced by norepinephrine(NE) or KCl in aortic vascular smooth muscle in a concentration-dependent manner, which could be also significantly attenuated by iberiotoxin(100 nmol/L) and ryanodine(10 μmol/L) respectively. In conclusion, tacrolimus could indirectly activate BKCa currents by increasing Ca^2+ sparks released from ryanodine receptors, which inhibited the NE- or KCl-induced contraction in rat aorta.展开更多
Voltage-gated Na+ channel (Nav channel) scorpion toxins are classified as α- and β-neurotoxins. Ts5 (α-neurotoxin) and Ts1 (β-neurotoxin) from Tityus serrulatus venom (TsV) interact with Nav channels, increasing N...Voltage-gated Na+ channel (Nav channel) scorpion toxins are classified as α- and β-neurotoxins. Ts5 (α-neurotoxin) and Ts1 (β-neurotoxin) from Tityus serrulatus venom (TsV) interact with Nav channels, increasing Na+ influx and activating voltage-dependent Ca2+ channels. This study aimed to investigate the effect of TsV, Ts1 and Ts5 on the cytosolic Ca2+ concentration ([Ca2+]C) in rat aortic smooth muscle cells. Toxins were isolated by ion exchange chromatography (Ts1) followed by RP-HPLC (Ts5). The rat aortic smooth muscle cells were isolated in Hanks buffer pH 7.4 and loaded with 5 μmol/L of Fura-2AM (45 minutes at 37℃), in order to measure [Ca2+]C by fluorescence of Fura-2/AM (ratio 340/380 nm). The fluorescence was measured in one single cell (excitation: 340 and 380 nm;emission: 510 nm). TsV (100 and 500 mg/mL) and its toxins Ts1 and Ts5 (50 and 100 mg/mL each) led to a concentration-dependent increase in [Ca2+]C. Tetrodotoxin (1 mmol/L), a Nav channel blocker, and verapamil (1 mmol/L), a voltage-operated Ca2+ channel blocker, inhibited the increase in [Ca2+]C induced by TsV (500 mg/mL). In conclusion, TsV and its toxins induce a concentration-dependent increase in [Ca2+]C that probably occurs through interaction with Nav channels, thus inducing depolarization and consequent Ca2+ influx. This assumption is based on the fact that this effect is inhibited by tetrodotoxin and verapamil, showing a direct action of TsV toxins on aorta smooth muscle cells.展开更多
文摘To investigate the relationship between intracellular free Ca^2+ concentration ([Ca^2+ ]i ) and calcium-activated chloride (Clca) channels of pulmonary artery smooth muscle cells (PASMCs) in rats under acute and chronic hypoxic conditions, acute hypoxia-induced contraction was observed in rat pulmonary artery by using routine blood vascular perfusion in vitro. The fluorescence Ca^2+ indicator Fura-2/AM was used to observe [Ca^2+ ]i of rat PASMCs under normal and chronic hypoxic condition. The effect of Clca channels on PASMCs proliferation was assessed by MTT assay. The Clca channel blockers niflumic acid (NFA) and indaryloxyacetic acid (IAA-94) exerted inhibitory effects on acute hypoxia-evoked contractions in the pulmonary artery. Under chronic hypoxic condition, [Ca^2+ ]i was increased. Under normoxic condition, [Ca^2+ If was (123.634-18.98) nmol/ L, and in hypoxic condition, [Ca^2+]i wag (281. 754-16.48) nmol/L (P〈0. 01). Under normoxic condition, [Ca^2+ ]i showed no significant change and no effect on Clca channels was observed (P〉 0. 05). Chronic hypoxia increased [Ca^2+ ]i which opened Clca channels. The NFA and IAA-94 blocked the channels and decreased [Ca^2+ ]i from (281.75± 16.48) nmot/L to (117.66 ±15.36) nmol/L (P〈0.01). MTT assay showed that under chronic hypoxic condition NFA and IAA-94 decreased the value of absorbency (A value) from 0. 459±0. 058 to 0. 224±0. 025 (P〈0. 01). Hypoxia increased [Ca^2+ ]i which opened Cl~ channels and had a positive-feedback in [Ca^2+ ]i. This may play an important role in hypoxic pulmonary hypertension. Under chronic hypoxic condition, Clca channel may play a part in the regulation of proliferation of PASMCs.
基金Supported by The National Natural Science Foundation of China,No.30270532 and No.30670774Tsinghua-Yue-Yuen Medical Science Foundation,No.20240000531 and No.20240000547
文摘AIM: To explore the possibility of using the Noninvasive Micro-test Technique (NMT) to investigate the role of Transient Receptor Potential Canonical 1 (TRPC1) in regulating Ca^2+ influxes in HL-7702 cells, a normal human liver cell line.METHODS: Net Ca^2+ fluxes were measured with NMT, a technology that can obtain dynamic information of specific/selective ionic/molecular activities on material surfaces, non-invasively. The expression levels of TRPCl were increased by liposomal transfection, whose effectiveness was evaluated by Western-blotting and single cell reverse transcription-polymerase chain reaction.RESULTS: Ca^2+ influxes could be elicited by adding 1 mmol/L CaCl2 to the test solution of HL-7702 cells. They were enhanced by addition of 20 μmol/L noradrenalin and inhibited by 100 μmol/L LaCl3 (a non-selective Ca^2+ channel blocker); 5 μmol/L nifedipine did not induce any change. Overexpression of TRPCl caused increased Ca^2+ influx. Five micromoles per liter nifedipine did not inhibit this elevation, whereas 100 μmol/L LaCI3 did.CONCLUSION: In HL-7702 cells, there is a type of TRPCl-dependent Ca^2+ channel, which could be detected v/a NMT and inhibited by La^3+.
文摘Intracellular cAMP and Ca^2+ are involved in the regulation of steroidogenic activity in Leydig cells, which coordinate responses to luteinizing hormone (LH) and human ehorionic gonadotropin (hCG). However, the identification of Ca^2+ entry implicated in Leydig cell steroidogenesis is not well defined. The objective of this study was to identify the type of Ca^2+ channel that affects Leydig cell steroidogenesis. In vitro steroidogenesis in the freshly dissociated Leydig cells of mice was induced by hCG incubation. The effects of mibefradil (a putative T-type Ca^2+ channel blocker) on steroidogenesis were assessed using reverse transcription (RT)-polymerase chain reaction analysis for the steroidogenic acute regulatory protein (STAR) mRNA expression and testosterone production using radioimmunoassay. In the presence of 1.0 mmol L-1 extracellular Ca^2+, hCG at 1 to 100 IU noticeably elevated both StAR mRNA level and testosterone secretion (P 〈 0.05), and the stimulatory effects of hCG were markedly diminished by mibefradil in a dose-dependent manner (P 〈 0.05). Moreover; the hCG-induced increase in testosterone production was completely removed when external Ca^2+ was omitted, implying that Ca entry is needed for hCG-induced steroidogenesis. Furthermore, a patch-clamp study revealed the presence of mibefradil-sensitive Ca^24- currents seen at a concentration range that nearly paralleled those inhibiting steroidogenesis. Collectively, Our data provide evidence that hCG-stimulated steroidogenesis is mediated at least in part by Ca^2+ entry carried out by the T-type Ca^2+ channel in the Leydig cells of mice.
文摘Objective: To observe the effect of the serum containing Chengzai Pill on the L-type voltage-sensitive calcium channels current (L-VSCCsC) of osteoblastic MC3T3-E1 cells pretreated with methylprednisolone (mPSL). Methods: A control group, a model group, a low dose group and a high dose group were set up. The whole cell patch clamp technique was used to record L-VSCCsC of 10 osteoblastic MC3T3-E1 cells in each group and their peak currents were determined. Results: The peak current of the control group was 0.2284±0.0209 nA; the peak current of the model group was 0.1839±0.0179 nA; decreased by 19.5% as compared with the control group (P<0.01); the peak current of the low and high dose groups was 0.2526± 0.0093 nA and 0.2671±0.0120 nA respectively, increased by 37.4% and 45.2% as compared with the model group (P<0.01); the difference between the low and high dose groups was P<0.05. Conclusion: 1. mPSL inhibits L-VSCCsC of osteoblasts; and 2. The serum containing Chengzai Pill increases L-VSCCsC of osteoblasts pretreated with mPSL.
基金the Foundation of Supported by National Natural Science Foundation of China(32070392 and 32070393)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0502-0303).
文摘Saldigones A-C(1,3,4),three new isoprenylated flavonoids with diverse flavanone,pterocarpan,and isoflavanone architec-tures,were characterized from the roots of Salvia digitaloides,together with a known isoprenylated flavanone(2).Notably,it’s the first report of isoprenylated flavonoids from Salvia species.The structures of these isolates were elucidated by extensive spectroscopic analysis.All of the compounds were evaluated for their activities on Cav3.1 low voltage-gated Ca^(2+)channel(LVGCC),of which 2 strongly and dose-dependently inhibited Cav3.1 peak current.
基金supported by grants from National Natural Science Foundation of China (32370322)the National Key R&D Program of China (2022YFD1400800) to W.W.the Hainan Excellent Talent Team。
文摘Calcium ions(Ca^(2+)) are crucial intracellular second messengers in eukaryotic cells. Upon pathogen perception, plants generate a transient and rapid increase in cytoplasmic Ca^(2+)levels, which is subsequently decoded by Ca^(2+)sensors and effectors to activate downstream immune responses. The elevation of cytosolic Ca^(2+)is commonly attributed to Ca^(2+)influx mediated by plasma membranelocalized Ca^(2+)–permeable channels. However, the contribution of Ca^(2+)release triggered by intracellular Ca^(2+)-permeable channels in shaping Ca^(2+)signaling associated with plant immunity remains poorly understood. This review discusses recent advances in understanding the mechanism underlying the shaping of Ca^(2+)signatures upon the activation of immune receptors, with particular emphasis on the identification of intracellular immune receptors as non-canonical Ca^(2+)-permeable channels. We also discuss the involvement of Ca^(2+)release from the endoplasmic reticulum in generating Ca^(2+)signaling during plant immunity.
基金Supported by the National Natural Science Foundation of China,No.816660412 to Xie R and No.81160265 to Xu JY
文摘The Na^+/Ca^(2+) exchanger(NCX) protein family is a part of the cation/Ca^(2+) exchanger superfamily and participates in the regulation of cellular Ca^(2+) homeostasis. NCX1, the most important subtype in the NCX family, is expressed widely in various organs and tissues in mammals and plays an especially important role in the physiological and pathological processes of nerves and the cardiovascular system. In the past few years, the function of NCX1 in the digestive system has received increasing attention; NCX1 not only participates in the healing process of gastric ulcer and gastric mucosal injury but also mediates the development of digestive cancer, acute pancreatitis, and intestinal absorption.This review aims to explore the roles of NCX1 in digestive system physiology and pathophysiology in order to guide clinical treatments.
文摘A large amount of evidence has supported a clinical link between diabetes and inflammatory diseases,e.g.,cancer,dementia,and hypertension.In addition,it is also suggested that dysregulations related to Ca^(2+)signaling could link these diseases,in addition to 3'-5'-cyclic adenosine monophosphate(cAMP)signaling pathways.Thus,revealing this interplay between diabetes and inflammatory diseases may provide novel insights into the pathogenesis of these diseases.Publications involving signaling pathways related to Ca^(2+)and cAMP,inflammation,diabetes,dementia,cancer,and hypertension(alone or combined)were collected by searching PubMed and EMBASE.Both signaling pathways,Ca^(2+)and cAMP signaling,control the release of neurotransmitters and hormones,in addition to neurodegeneration,and tumor growth.Furthermore,there is a clear relationship between Ca^(2+)signaling,e.g.,increased Ca^(2+)signals,and inflammatory responses.cAMP also regulates pro-and anti-inflammatory responses.Due to the experience of our group in this field,this article discusses the role of Ca^(2+)and cAMP signaling in the correlation between diabetes and inflammatory diseases,including its pharmacological implications.As a novelty,this article also includes:(1)A timeline of the major events in Ca^(2+)/cAMP signaling;and(2)As coronavirus disease 2019(COVID-19)is an emerging and rapidly evolving situation,this article also discusses recent reports on the role of Ca^(2+)channel blockers for preventing Ca^(2+)signaling disruption due to COVID-19,including the correlation between COVID-19 and diabetes.
文摘Heavy alcohol consumption is associated with an increased risk of erectile dysfunction (ED); however, the acute effects of ethanol (EtOH) on penile tissue are not fully understood. We sought to investigate the effects of EtOH on corporal tissue tonicity, as well as the intracellular Ca^2+ concentration ([Ca^2+]i) and potassium channel activity of corporal smooth muscle. Strips of corpus cavernosum (CC) from rabbits were mounted in organ baths for isometric tension studies. Electrical field stimulation (EFS) was applied to strips precontracted with 10 μmol L^-1 phenylephrine as a control. EtOH was then added to the organ bath and incubated before EFS. The [Ca^2+]i levels were monitored by the ratio of fura-2 fluorescence intensities using the fura-2 loading method. Single-channel and whole-cell currents were recorded by the conventional patch-clamp technique in short-term cultured smooth muscle cells from human CC tissue. The corpus cavernosal relaxant response of EFS was decreased in proportion to the concentration of EtOH. EtOH induced a sustained increase in [Ca^2+]i in a dose-dependent manner, Extracellular application of EtOH significantly increased whole-cell K^+ currents in a concentration-dependent manner (P 〈 0.05). EtOH also increased the open probability in cell-attached patches; however, in inside-out patches, the application of EtOH to the intracellular aspect of the patches induced slight inhibition of Ca^2+-activated potassium channel (KCa) activity. EtOH caused a dose-dependent increase in cavemosal tension by alterations to [Ca^2+]i. Although EtOH did not affect KCa channels directly, it increased the channel activity by increasing [Ca^2+]i. The increased corpus cavemosal tone caused by EtOH might be one of the mechanisms of ED after heavy drinking.
基金supported by the National Natural Science Foundation of China(No.81102439)
文摘The present study attempted to test a novel hypothesis that Ca^2+ sparks play an important role in arterial relaxation induced by tacrolimus. Recorded with confocal laser scanning microscopy, tacrolimus(10 μmol/L) increased the frequency of Ca^2+ sparks, which could be reversed by ryanodine(10 μmol/L). Electrophysiological experiments revealed that tacrolimus(10 μmol/L) increased the large-conductance Ca^2+-activated K+ currents(BKCa) in rat aortic vascular smooth muscle cells(AVSMCs), which could be blocked by ryanodine(10 μmol/L). Furthermore, tacrolimus(10 and 50 μmol/L) reduced the contractile force induced by norepinephrine(NE) or KCl in aortic vascular smooth muscle in a concentration-dependent manner, which could be also significantly attenuated by iberiotoxin(100 nmol/L) and ryanodine(10 μmol/L) respectively. In conclusion, tacrolimus could indirectly activate BKCa currents by increasing Ca^2+ sparks released from ryanodine receptors, which inhibited the NE- or KCl-induced contraction in rat aorta.
基金supported by grants from Fundacao de Amparoa Pesquisa do Estado de Sao Paulo(FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq).
文摘Voltage-gated Na+ channel (Nav channel) scorpion toxins are classified as α- and β-neurotoxins. Ts5 (α-neurotoxin) and Ts1 (β-neurotoxin) from Tityus serrulatus venom (TsV) interact with Nav channels, increasing Na+ influx and activating voltage-dependent Ca2+ channels. This study aimed to investigate the effect of TsV, Ts1 and Ts5 on the cytosolic Ca2+ concentration ([Ca2+]C) in rat aortic smooth muscle cells. Toxins were isolated by ion exchange chromatography (Ts1) followed by RP-HPLC (Ts5). The rat aortic smooth muscle cells were isolated in Hanks buffer pH 7.4 and loaded with 5 μmol/L of Fura-2AM (45 minutes at 37℃), in order to measure [Ca2+]C by fluorescence of Fura-2/AM (ratio 340/380 nm). The fluorescence was measured in one single cell (excitation: 340 and 380 nm;emission: 510 nm). TsV (100 and 500 mg/mL) and its toxins Ts1 and Ts5 (50 and 100 mg/mL each) led to a concentration-dependent increase in [Ca2+]C. Tetrodotoxin (1 mmol/L), a Nav channel blocker, and verapamil (1 mmol/L), a voltage-operated Ca2+ channel blocker, inhibited the increase in [Ca2+]C induced by TsV (500 mg/mL). In conclusion, TsV and its toxins induce a concentration-dependent increase in [Ca2+]C that probably occurs through interaction with Nav channels, thus inducing depolarization and consequent Ca2+ influx. This assumption is based on the fact that this effect is inhibited by tetrodotoxin and verapamil, showing a direct action of TsV toxins on aorta smooth muscle cells.