Objective:Diabetic nephropathy(DN)is a deleterious microangiopathy of diabetes,constituting a critical determinant of fatality in diabetic patients.This work is purposed to disclose the effects and modulatory mechanis...Objective:Diabetic nephropathy(DN)is a deleterious microangiopathy of diabetes,constituting a critical determinant of fatality in diabetic patients.This work is purposed to disclose the effects and modulatory mechanism of BTG anti-proliferation factor 2(BTG2)during the pathological process of DN.Methods:BTG2 expression in kidney tissues of diabetic mice and high glucose(HG)-exposed human proximal tubular cell line HK-2 was assessed with Western blot and RT-qPCR.The diabetic mice model was constructed by streptozotocin injection and confirmed by the blood glucose level beyond 16.7 mmol/L.Hematoxylin and eosin(H&E)staining and measurement of kidney function hallmarks were conducted to assess kidney injury.Cell counting kit(CCK)-8 method and TUNEL assay appraised cell activity and apoptosis.Oil red O staining assayed lipid accumulation.Relevant commercial kits were used to estimate oxidative stress-related factors.Co-immunoprecipitation(Co-IP)assay testified the binding relationship of BTG2 with protein arginine methyltransferase 1(PRMT1).Results:BTG2 expression was significantly raised in renal tissues of diabetic mice and HK-2 cells exposed to HG.BTG2 deficiency improved viability and extenuated the apoptosis,lipid deposition as well as oxidative stress in HK-2 cells following HG exposure.In addition,PRMT1 was also overexpressed in HK-2 cells exposed to HG.BTG2 interacted with PRMT1 and positively modulated PRMT1 expression.The effects of BTG2 interference on viability,apoptosis,lipid deposition,and oxidative stress in HG-challenged HK-2 cells were partially abrogated by PRMT1 overexpression.Conclusion:Altogether,BTG2 might aggravate HK-2 cell injury in response to HG by binding with PRMT1,providing a novel target for the therapeutic strategy of DN.展开更多
Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional p...Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional process is regarded confusing. The microfacies, construction types, and depositional model of the Member Deng-2 marginal microbial mound-bank complex have been investigated using unmanned aerial vehicle photography, outcrop section investigation, thin section identification,and seismic reflections in the southwestern Sichuan Basin. The microbialite lithologic textures in this region include thrombolite, dendrolite, stromatolite, fenestral stromatolite, spongiostromata stone,oncolite, aggregated grainstone, and botryoidal grapestone. Based on the comprehensive analysis of“depositional fabrics-lithology-microfacies”, an association between a fore mound, mound framework,and back mound subfacies has been proposed based on water depth, current direction, energy level and lithologic assemblages. The microfacies of the mound base, mound core, mound flank, mound cap, and mound flat could be recognized among the mound framework subfacies. Two construction types of marginal microbial mound-bank complex have been determined based on deposition location, mound scale, migration direction, and sedimentary facies association. Type Jinkouhe microbial mound constructions(TJMMCs) develop along the windward margin owing to their proximity to the seaward subfacies fore mound, with a northeastwardly migrated microbial mound on top of the mud mound,exhibiting the characteristics of large-sized mounds and small-sized banks in the surrounding area. Type E'bian microbial mound constructions(TEMMCs) primarily occur on the leeward margin, resulting from the presence of onshore back mound subfacies, with the smaller southwestward migrated microbial mounds existing on a thicker microbial flat. The platform margin microbial mound depositional model can be correlated with certain lateral comparison profile and seismic reflection structures in the 2D seismic section, which can provide references for future worldwide exploration. Microbial mounds with larger buildups and thicker vertical reservoirs are typically targeted on the windward margin, while small-sized microbial mounds and flats with better lateral connections are typically focused on the leeward margin.展开更多
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is report...Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively.展开更多
Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil re...Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil recovery.Only a few studies have investigated the numerical modeling of this potential effect in porous media.This study focuses on asphaltene deposition due to natural gas and CO_(2) injection.Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model.The results indicate that the injection of natural gas exacerbates asphaltene deposition,leading to a significant reduction in permeability near the injection well and throughout the reservoir.This reduction in permeability strongly affects the ability of gas toflow through the reservoir,resulting in an improvement of the displacement front.The displacement effi-ciency of the injection gas process increases by up to 1.40%when gas is injected at 5500 psi,compared to the scenario where the asphaltene model is not considered.CO_(2) injection leads to a miscible process with crude oil,extracting light and intermediate components,which intensifies asphaltene precipitation and increases the viscosity of the remaining crude oil,ultimately reducing the recovery rate.展开更多
Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in viv...Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.展开更多
Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling ...Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.展开更多
Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriou...Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriously limit the practical application of LM.Herein,with the aid of a hard template approach,a novel lithiophilic CoF_(2)-carbon hollow sphere(CoF_(2)@C-HS)composite material is successfully prepared via a facile in-situ fluorination and etching strategy.The lithiophilic CoF_(2) acts as nucleation sites to reduce nucleation overpotential as well as induces the spatial Li deposition and the formation of LiFrich solid electrolyte interphase(SEI),and the hollow carbon matrix can enhance the electrical conductivity and offer free space for LM deposition.Theoretical simulations reveal that the synergistic effect of lithiophilic CoF_(2) and hollow carbon matrix homogenizes the electric field distribution and Li~+flux.Benefiting from these advantages,the CoF_(2)@C-HS-modified copper substrate electrode delivers an enhanced Coulombic efficiency(CE)of 93.7%for 280 cycles at 1 mA cm^(-2)and 1 mA h cm^(-2).The symmetrical cell using CoF_(2)@C-HS can stably cycle more than 1800 h with a low voltage hysteresis of 11 mV at a current density of 0.5 MA cm^(-2)and an areal capacity of 0.5 mA h cm^(-2).Moreover,the Li@CoF_(2)@C-HS composite anode enables more than 300 stable cycles at 1 C with a capacity retention of 95%in LiFePO_(4)-based full cell and 110 stable cycles at 1 C in LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)-based highvoltage full cell.This work might shed a new light on designing lithiophilic hosts to spatially confine LM deposition,realizing dendrite-free LM anodes and the practical applications of LM batteries.展开更多
A total of 45 alkylbenzenes were detected and identified in crude oils with different depositional environments and thermal maturities from the Tarim Basin,Beibuwan Basin,and Songliao Basin using comprehensive two-dim...A total of 45 alkylbenzenes were detected and identified in crude oils with different depositional environments and thermal maturities from the Tarim Basin,Beibuwan Basin,and Songliao Basin using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GCTOFMS).By analyzing the distribution characteristics of C0-C5alkylbenzenes,it is found that the content of some alkylbenzenes varies greatly in crude oils.Based on the distribution characteristics of 1,2,4,5-tetramethylbenzene(Te MB)and 1,2,3,4-Te MB,the ratio of 1,2,4,5-Te MB to 1,2,3,4-Te MB is proposed to indicate the organic matter origin and depositional environment of ancient sediments.Oil samples originated mainly from lower hydrobiont,algae,bacteria and source rocks deposited under reducing/anoxic conditions have low 1,2,4,5-/1,2,3,4-Te MB values(less than 0.6),while oil samples originated mainly from terrestrial higher plants and source rocks deposited under oxic/sub-oxic conditions have higher 1,2,4,5-/1,2,3,4-Te MB values(greater than 1.0).The significant difference of 1,2,4,5-/1,2,3,4-Te MB values is controlled by 1,2,4,5-Te MB content.1,2,4,5-Te MB content in oils derived from source rocks deposited in oxidized sedimentary environment(greater than 1.0 mg/g whole oil)is higher than that in oils from source rocks deposited in reduced sedimentary environment(less than 1.0 mg/g whole oil).1,2,4,5-/1,2,3,4-Te MB ratio might not or slightly be affected by evaporative fractionation,biodegradation and thermal maturity.1,2,4,5-/1,2,3,4-Te MB ratio and 1,2,4,5-Te MB content can be used as supplementary parameter for the identification of sedimentary environment and organic matter input.It should be noted that compared to the identification of organic matter sources,the 1,2,4,5-/1,2,3,4-Te MB parameter is more effective in identifying sedimentary environments.展开更多
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p...In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir.展开更多
BACKGROUND Intrapancreatic fat deposition(IPFD)exerts a significant negative impact on patients with type 2 diabetes mellitus(T2DM),accelerates disease deterioration,and may lead to impairedβ-cell quality and functio...BACKGROUND Intrapancreatic fat deposition(IPFD)exerts a significant negative impact on patients with type 2 diabetes mellitus(T2DM),accelerates disease deterioration,and may lead to impairedβ-cell quality and function.AIM To investigate the correlation between T2DM remission and IPFD.METHODS We enrolled 80 abdominally obese patients with T2DM admitted to our institution from January 2019 to October 2023,including 40 patients with weight lossinduced T2DM remission(research group)and 40 patients with short-term intensive insulin therapy-induced T2DM remission(control group).We comparatively analyzed improvements in IPFD[differential computed tomography(CT)values of the spleen and pancreas and average CT value of the pancreas];levels of fasting blood glucose(FBG),2-h postprandial blood glucose(2hPBG),and insulin;and homeostasis model assessment of insulin resistance(HOMA-IR)scores.Correlation analysis was performed to explore the association between T2DM remission and IPFD.RESULTS After treatment,the differential CT values of the spleen and pancreas,FBG,2hPBG,and HOMA-IR in the research group were significantly lower than those before treatment and in the control group,and the average CT value of the pancreas and insulin levels were significantly higher.Correlation analysis revealed that the greater the T2DM remission,the lower the amount of IPFD.展开更多
Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic de...Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic devices. Herein, we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures. Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2. Due to the interaction between the In2Se3 and MoSe2 layers, the heterostructure shows the quench- ing and red-shift of photoluminescence. Moreover, the current rectification behavior and photovoltaic effect can be observed from the heterostructure, which is attributed to the unique band structure alignment of the heterostructure, and is further confirmed by Kevin probe force microscopy measurement. The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.展开更多
Copper and titanium remain relatively plentiful in earth crust.Therefore,using them in solar energy conversion technologies are of significant interest.In this work,cuprous oxide(Cu2O)-modified short TiO2 nanotube a...Copper and titanium remain relatively plentiful in earth crust.Therefore,using them in solar energy conversion technologies are of significant interest.In this work,cuprous oxide(Cu2O)-modified short TiO2 nanotube array electrode was prepared based on the following two design ideas:first,the short titania nanotubes obtained from sonoelectrochemical anodization possess excellent charge separation and transportation properties as well as desirable mechanical stability;second,the sonoelectrochemical deposition technique favours the improvement in the combination between Cu2O and TiO2 nanotubes,and favours the dispersion of Cu2O particles.UV-Vis absorption and photo-electronchemical measurements proved that the Cu2O coating extended the visible spectrum absorption and the solar spectrum-induced photocurrent response.Under AM1.5 irradiation,the photocurrent density of the composite electrode(i.e.sonoelectrochemical deposition for 5 min) was more than 4.75 times as high as the pure nanotube electrode.Comparing the photoactivity of the Cu2O/TiO2 electrode obtained using sonoelectrochemical deposition with others that synthesized using plain electrochemical deposition,the photocurrent density of the former electrode was 2.2 times higher than that of the latter when biased at 1.0 V(vs.Ag/AgCl).The reproducible photocurrent response under intermittent illumination demonstrated the excellent stability of the composite electrode.Such kind of composite electrode material will have many potential applications in solar cell and other fields.展开更多
In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. B...In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst.展开更多
Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facil...Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.展开更多
The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o...The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
In situ TiB2/Cu composites were fabricated by both solid-liquid(S-L)and liquid-liquid(L-L)reactive spray deposition in combination with cold rolling and annealing.The microstructure and properties of the fabricated Ti...In situ TiB2/Cu composites were fabricated by both solid-liquid(S-L)and liquid-liquid(L-L)reactive spray deposition in combination with cold rolling and annealing.The microstructure and properties of the fabricated TiB2/Cu composites were investigated.The results show that the reactive mode and rolling treatment are the main factors affecting the microstructure and properties of the TiB2/Cu composite.The in situ reaction in the L-L reaction can be carried out more completely.By controlling the rolling and annealing process,the relative density and the properties of the as-deposited composites are optimized.The comprehensive performance of the deformed TiB2/Cu composite prepared by L-L reactive spray deposition(401 MPa and 83.5%IACS)is better than that by S-L reactive spray deposition(520 MPa and 20.2%IACS).展开更多
Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function...Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function and whole-plant level C cycling.CO_(2)elevation and nitrogen(N)deposition,which are two major environmental issues worldwide,aff ect plant photosynthetic C assimilation and C release in forest ecosystems.However,information regarding the eff ect of CO_(2)elevation and N deposition on NSC storage in diff erent organs remains limited,especially regarding the trade-off between growth and NSC reserves.Therefore,here we analyzed the variations in the NSC storage in diff erent organs of Chinese fi r(Cunninghamia lanceolata)under CO_(2)elevation and N addition and found that NSC concentrations and contents in all organs of Chinese fi r saplings increased remarkably under CO_(2)elevation.However,N addition induced diff erential accumulation of NSC among various organs.Specifi cally,N addition decreased the NSC concentrations of needles,branches,stems,and fi ne roots,but increased the NSC contents of branches and coarse roots.The increase in the NSC contents of roots was more pronounced than that in the NSC content of aboveground organs under CO_(2)elevation.The role of N addition in the increase in the structural biomass of aboveground organs was greater than that in the increase in the structural biomass of roots.This result indicated that a diff erent tradeoff between growth and NSC storage occurred to alleviate resource limitations under CO_(2)elevation and N addition and highlights the importance of separating biomass into structural biomass and NSC reserves when investigating the eff ects of environmental change on biomass allocation.展开更多
High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resisti...High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices,展开更多
The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pre...The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pressure chemical vapor deposition(APCVD) was investigated. The precursor concentration significantly affected the deposition and morphology of TiO_(2) grains assembling the film. The deposition time for fully covering the surface of mica decreased from 120 to 10 s as the TiCl_(4) concentration increased from 0.38%to 2.44%. The grain size increased with the TiCl_(4) concentration. The AFM and TEM analysis demonstrated that the aggregation of TiO_(2) clusters at the initial stage finally result to the agglomeration of fine TiO_(2) grains at high TiCl_(4) concentrations. Following the results, it was suggested that the nucleation density and size was easy to be adjusted when the TiCl_(4) concentration is below 0.90%.展开更多
Recently, two-dimensional monolayer molybdenum disulfide(MoS_2), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applic...Recently, two-dimensional monolayer molybdenum disulfide(MoS_2), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applications in optoelectronics and also thanks to its enhanced catalytic activity which allows it to be used for energy harvesting. However,growth of controllable and high-quality monolayers is still a matter of research and the parameters determining growth mechanism are not completely clear. In this work, chemical vapor deposition is utilized to grow monolayer MoS_2 flakes while deposition duration and temperature effect have been systematically varied to develop a better understanding of the MoS_2 film formation and the influence of these parameters on the quality of the monolayer flakes. Different from previous studies, SEM results show that single-layer MoS_2 flakes do not necessarily grow flat on the surface, but rather they can stay erect and inclined at different angles on the surface, indicating possible gas-phase reactions allowing for monolayer film formation. We have also revealed that process duration influences the amount of MoO_3/MoO_2 within the film network. The homogeneity and the number of layers depend on the change in the desorption–adsorption of radicals together with sulfurization rates, and, inasmuch, a careful optimization of parameters is crucial. Therefore, distinct from the general trend of MoS_2 monolayer formation, our films are rough and heterogeneous with monolayer MoS_2 nanowalls. Despite this roughness and the heterogeneity, we observe a strong photoluminescence located around 675 nm.展开更多
基金supported by Key Project of Natural Science Research of Anhui Universities(No.KJ2020A0341).
文摘Objective:Diabetic nephropathy(DN)is a deleterious microangiopathy of diabetes,constituting a critical determinant of fatality in diabetic patients.This work is purposed to disclose the effects and modulatory mechanism of BTG anti-proliferation factor 2(BTG2)during the pathological process of DN.Methods:BTG2 expression in kidney tissues of diabetic mice and high glucose(HG)-exposed human proximal tubular cell line HK-2 was assessed with Western blot and RT-qPCR.The diabetic mice model was constructed by streptozotocin injection and confirmed by the blood glucose level beyond 16.7 mmol/L.Hematoxylin and eosin(H&E)staining and measurement of kidney function hallmarks were conducted to assess kidney injury.Cell counting kit(CCK)-8 method and TUNEL assay appraised cell activity and apoptosis.Oil red O staining assayed lipid accumulation.Relevant commercial kits were used to estimate oxidative stress-related factors.Co-immunoprecipitation(Co-IP)assay testified the binding relationship of BTG2 with protein arginine methyltransferase 1(PRMT1).Results:BTG2 expression was significantly raised in renal tissues of diabetic mice and HK-2 cells exposed to HG.BTG2 deficiency improved viability and extenuated the apoptosis,lipid deposition as well as oxidative stress in HK-2 cells following HG exposure.In addition,PRMT1 was also overexpressed in HK-2 cells exposed to HG.BTG2 interacted with PRMT1 and positively modulated PRMT1 expression.The effects of BTG2 interference on viability,apoptosis,lipid deposition,and oxidative stress in HG-challenged HK-2 cells were partially abrogated by PRMT1 overexpression.Conclusion:Altogether,BTG2 might aggravate HK-2 cell injury in response to HG by binding with PRMT1,providing a novel target for the therapeutic strategy of DN.
基金jointly funded by projects supported by the National Natural Science Foundation of China(Grant No.41872150)the Joint Funds of the National Natural Science Foundation of China(Grant No.U19B6003)Major Scientific and Technological Projects of CNPC during the 13th five-year plan(No.2019A-02-10)。
文摘Recent advances in hydrocarbon exploration have been made in the Member Deng-2 marginal microbial mound-bank complex reservoirs of the Dengying Formation in the western Sichuan Basin, SW China,where the depositional process is regarded confusing. The microfacies, construction types, and depositional model of the Member Deng-2 marginal microbial mound-bank complex have been investigated using unmanned aerial vehicle photography, outcrop section investigation, thin section identification,and seismic reflections in the southwestern Sichuan Basin. The microbialite lithologic textures in this region include thrombolite, dendrolite, stromatolite, fenestral stromatolite, spongiostromata stone,oncolite, aggregated grainstone, and botryoidal grapestone. Based on the comprehensive analysis of“depositional fabrics-lithology-microfacies”, an association between a fore mound, mound framework,and back mound subfacies has been proposed based on water depth, current direction, energy level and lithologic assemblages. The microfacies of the mound base, mound core, mound flank, mound cap, and mound flat could be recognized among the mound framework subfacies. Two construction types of marginal microbial mound-bank complex have been determined based on deposition location, mound scale, migration direction, and sedimentary facies association. Type Jinkouhe microbial mound constructions(TJMMCs) develop along the windward margin owing to their proximity to the seaward subfacies fore mound, with a northeastwardly migrated microbial mound on top of the mud mound,exhibiting the characteristics of large-sized mounds and small-sized banks in the surrounding area. Type E'bian microbial mound constructions(TEMMCs) primarily occur on the leeward margin, resulting from the presence of onshore back mound subfacies, with the smaller southwestward migrated microbial mounds existing on a thicker microbial flat. The platform margin microbial mound depositional model can be correlated with certain lateral comparison profile and seismic reflection structures in the 2D seismic section, which can provide references for future worldwide exploration. Microbial mounds with larger buildups and thicker vertical reservoirs are typically targeted on the windward margin, while small-sized microbial mounds and flats with better lateral connections are typically focused on the leeward margin.
基金financially supported by National Natural Science Foundation of China (Nos. 12075032 and 12105021)Beijing Municipal Natural Science Foundation (Nos.8222055 and 2232061)+1 种基金Yunnan Police College Project (No. YJKF002)Beijing Institute of Graphic Communication Project (No. Ec202207)。
文摘Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively.
基金funded by CNOOC Production Research Project(CCL2022SZPS0076).
文摘Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil recovery.Only a few studies have investigated the numerical modeling of this potential effect in porous media.This study focuses on asphaltene deposition due to natural gas and CO_(2) injection.Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model.The results indicate that the injection of natural gas exacerbates asphaltene deposition,leading to a significant reduction in permeability near the injection well and throughout the reservoir.This reduction in permeability strongly affects the ability of gas toflow through the reservoir,resulting in an improvement of the displacement front.The displacement effi-ciency of the injection gas process increases by up to 1.40%when gas is injected at 5500 psi,compared to the scenario where the asphaltene model is not considered.CO_(2) injection leads to a miscible process with crude oil,extracting light and intermediate components,which intensifies asphaltene precipitation and increases the viscosity of the remaining crude oil,ultimately reducing the recovery rate.
基金supported by the Natural Science Foundation of Fujian Province,No.2020J02027the National Natural Science Foundation of China,No.31970461the Foundation of NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,Fujian Maternity and Child Health Hospital,No.2022-NHP-05(all to WC).
文摘Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.
基金supported by the National Natural Science Foundation of China (Grant Nos.12205196 and 12275040)the National Key Research and Development Program of China (Grant No.2022YFE03090003)。
文摘Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.
基金supported by the Natural Science Foundation of China (52277218)the Hubei Provincial Natural Science Foundation of China (2024AFA094)+1 种基金the Excellent Discipline Cultivation Project by JHUN (2023XKZ009)supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,Materials Sciences and Engineering Division under contract number DE-AC05-00OR22725。
文摘Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriously limit the practical application of LM.Herein,with the aid of a hard template approach,a novel lithiophilic CoF_(2)-carbon hollow sphere(CoF_(2)@C-HS)composite material is successfully prepared via a facile in-situ fluorination and etching strategy.The lithiophilic CoF_(2) acts as nucleation sites to reduce nucleation overpotential as well as induces the spatial Li deposition and the formation of LiFrich solid electrolyte interphase(SEI),and the hollow carbon matrix can enhance the electrical conductivity and offer free space for LM deposition.Theoretical simulations reveal that the synergistic effect of lithiophilic CoF_(2) and hollow carbon matrix homogenizes the electric field distribution and Li~+flux.Benefiting from these advantages,the CoF_(2)@C-HS-modified copper substrate electrode delivers an enhanced Coulombic efficiency(CE)of 93.7%for 280 cycles at 1 mA cm^(-2)and 1 mA h cm^(-2).The symmetrical cell using CoF_(2)@C-HS can stably cycle more than 1800 h with a low voltage hysteresis of 11 mV at a current density of 0.5 MA cm^(-2)and an areal capacity of 0.5 mA h cm^(-2).Moreover,the Li@CoF_(2)@C-HS composite anode enables more than 300 stable cycles at 1 C with a capacity retention of 95%in LiFePO_(4)-based full cell and 110 stable cycles at 1 C in LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)-based highvoltage full cell.This work might shed a new light on designing lithiophilic hosts to spatially confine LM deposition,realizing dendrite-free LM anodes and the practical applications of LM batteries.
基金supported by Doctor’s Scientific Research Initiation Project of Yan’an University(YAU202213093)National Natural Science Foundation of China(Grant No.41503029)。
文摘A total of 45 alkylbenzenes were detected and identified in crude oils with different depositional environments and thermal maturities from the Tarim Basin,Beibuwan Basin,and Songliao Basin using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GCTOFMS).By analyzing the distribution characteristics of C0-C5alkylbenzenes,it is found that the content of some alkylbenzenes varies greatly in crude oils.Based on the distribution characteristics of 1,2,4,5-tetramethylbenzene(Te MB)and 1,2,3,4-Te MB,the ratio of 1,2,4,5-Te MB to 1,2,3,4-Te MB is proposed to indicate the organic matter origin and depositional environment of ancient sediments.Oil samples originated mainly from lower hydrobiont,algae,bacteria and source rocks deposited under reducing/anoxic conditions have low 1,2,4,5-/1,2,3,4-Te MB values(less than 0.6),while oil samples originated mainly from terrestrial higher plants and source rocks deposited under oxic/sub-oxic conditions have higher 1,2,4,5-/1,2,3,4-Te MB values(greater than 1.0).The significant difference of 1,2,4,5-/1,2,3,4-Te MB values is controlled by 1,2,4,5-Te MB content.1,2,4,5-Te MB content in oils derived from source rocks deposited in oxidized sedimentary environment(greater than 1.0 mg/g whole oil)is higher than that in oils from source rocks deposited in reduced sedimentary environment(less than 1.0 mg/g whole oil).1,2,4,5-/1,2,3,4-Te MB ratio might not or slightly be affected by evaporative fractionation,biodegradation and thermal maturity.1,2,4,5-/1,2,3,4-Te MB ratio and 1,2,4,5-Te MB content can be used as supplementary parameter for the identification of sedimentary environment and organic matter input.It should be noted that compared to the identification of organic matter sources,the 1,2,4,5-/1,2,3,4-Te MB parameter is more effective in identifying sedimentary environments.
基金Supported by the National Natural Science Foundation of China(U19B6003)Sinopec Technology Research Project(P20077kxjgz)。
文摘In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir.
基金Kunming University of Science and Technology Joint School Medicine Project,No.KUST-WS2022002Zthe Ethic Committee of Wenshan Hospital,Kunming University of Science and Technology(Approval No.WYLS2022005).
文摘BACKGROUND Intrapancreatic fat deposition(IPFD)exerts a significant negative impact on patients with type 2 diabetes mellitus(T2DM),accelerates disease deterioration,and may lead to impairedβ-cell quality and function.AIM To investigate the correlation between T2DM remission and IPFD.METHODS We enrolled 80 abdominally obese patients with T2DM admitted to our institution from January 2019 to October 2023,including 40 patients with weight lossinduced T2DM remission(research group)and 40 patients with short-term intensive insulin therapy-induced T2DM remission(control group).We comparatively analyzed improvements in IPFD[differential computed tomography(CT)values of the spleen and pancreas and average CT value of the pancreas];levels of fasting blood glucose(FBG),2-h postprandial blood glucose(2hPBG),and insulin;and homeostasis model assessment of insulin resistance(HOMA-IR)scores.Correlation analysis was performed to explore the association between T2DM remission and IPFD.RESULTS After treatment,the differential CT values of the spleen and pancreas,FBG,2hPBG,and HOMA-IR in the research group were significantly lower than those before treatment and in the control group,and the average CT value of the pancreas and insulin levels were significantly higher.Correlation analysis revealed that the greater the T2DM remission,the lower the amount of IPFD.
文摘Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic devices. Herein, we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures. Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2. Due to the interaction between the In2Se3 and MoSe2 layers, the heterostructure shows the quench- ing and red-shift of photoluminescence. Moreover, the current rectification behavior and photovoltaic effect can be observed from the heterostructure, which is attributed to the unique band structure alignment of the heterostructure, and is further confirmed by Kevin probe force microscopy measurement. The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.
基金the State Key Development Program for Basic Research of China (Grant No.2009CB220004)the Shanghai Basic Research Key Project (08JC1411300,0952nm01800)+1 种基金the National High Technology Research and Development Program of China (Grant No.2009 AA063003)Shanghai Tongji Gao Tingyao Environmental Science and Technology Development Foundation for financial support
文摘Copper and titanium remain relatively plentiful in earth crust.Therefore,using them in solar energy conversion technologies are of significant interest.In this work,cuprous oxide(Cu2O)-modified short TiO2 nanotube array electrode was prepared based on the following two design ideas:first,the short titania nanotubes obtained from sonoelectrochemical anodization possess excellent charge separation and transportation properties as well as desirable mechanical stability;second,the sonoelectrochemical deposition technique favours the improvement in the combination between Cu2O and TiO2 nanotubes,and favours the dispersion of Cu2O particles.UV-Vis absorption and photo-electronchemical measurements proved that the Cu2O coating extended the visible spectrum absorption and the solar spectrum-induced photocurrent response.Under AM1.5 irradiation,the photocurrent density of the composite electrode(i.e.sonoelectrochemical deposition for 5 min) was more than 4.75 times as high as the pure nanotube electrode.Comparing the photoactivity of the Cu2O/TiO2 electrode obtained using sonoelectrochemical deposition with others that synthesized using plain electrochemical deposition,the photocurrent density of the former electrode was 2.2 times higher than that of the latter when biased at 1.0 V(vs.Ag/AgCl).The reproducible photocurrent response under intermittent illumination demonstrated the excellent stability of the composite electrode.Such kind of composite electrode material will have many potential applications in solar cell and other fields.
基金Project (Nos. 90610005 and 20576120) supported by the National Natural Science Foundation of China
文摘In this study, supported nonmetal (boron) doping TiO2 coating photocatalysts were prepared by chemical vapor deposition (CVD) to enhance the activity under visible light irradiation and avoid the recovering of TiO2. Boron atoms were successfully doped into the lattice of TiO2 through CVD, as evidenced from XPS analysis. B-doped TiO2 coating catalysts showed drastic and strong absorption in the visible light range with a red shift in the band gap transition. This novel B-TiO2 coating photocatalyst showed higher photocatalytic activity in methyl orange degradation under visible light irradiation than that of the pure TiO2 photocatalyst.
基金sponsored by the National Natural Science Foundation of China (Nos. 51402190, 61574091)Shanghai Sailing Program (18YF1427800)the special funds for theoretical physics of the National Natural Science Foundation of China (No. 11747029)
文摘Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.
基金supported by the National Natural Science Fundation of China(U1361202,51276120)~~
文摘The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金Projects(U1502274,51834009)supported by the National Natural Science Foundation of ChinaProject(2017ZDXM-GY-028)supported by the Key Research and Development Program of Shaanxi,China。
文摘In situ TiB2/Cu composites were fabricated by both solid-liquid(S-L)and liquid-liquid(L-L)reactive spray deposition in combination with cold rolling and annealing.The microstructure and properties of the fabricated TiB2/Cu composites were investigated.The results show that the reactive mode and rolling treatment are the main factors affecting the microstructure and properties of the TiB2/Cu composite.The in situ reaction in the L-L reaction can be carried out more completely.By controlling the rolling and annealing process,the relative density and the properties of the as-deposited composites are optimized.The comprehensive performance of the deformed TiB2/Cu composite prepared by L-L reactive spray deposition(401 MPa and 83.5%IACS)is better than that by S-L reactive spray deposition(520 MPa and 20.2%IACS).
基金the National Natural Science Foundation of China(Grant Nos.32192434,42007102)Natural Science Foundation of Fujian Province(Grant No.2020J01376)+1 种基金the Start-up Foundation for Advanced Talents in Sanming University(Grant No.19YG13)Educational Research Project for Young and Middle-aged Teachers of Fujian Provincial Department of Education(Grant No.JAT190704).
文摘Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function and whole-plant level C cycling.CO_(2)elevation and nitrogen(N)deposition,which are two major environmental issues worldwide,aff ect plant photosynthetic C assimilation and C release in forest ecosystems.However,information regarding the eff ect of CO_(2)elevation and N deposition on NSC storage in diff erent organs remains limited,especially regarding the trade-off between growth and NSC reserves.Therefore,here we analyzed the variations in the NSC storage in diff erent organs of Chinese fi r(Cunninghamia lanceolata)under CO_(2)elevation and N addition and found that NSC concentrations and contents in all organs of Chinese fi r saplings increased remarkably under CO_(2)elevation.However,N addition induced diff erential accumulation of NSC among various organs.Specifi cally,N addition decreased the NSC concentrations of needles,branches,stems,and fi ne roots,but increased the NSC contents of branches and coarse roots.The increase in the NSC contents of roots was more pronounced than that in the NSC content of aboveground organs under CO_(2)elevation.The role of N addition in the increase in the structural biomass of aboveground organs was greater than that in the increase in the structural biomass of roots.This result indicated that a diff erent tradeoff between growth and NSC storage occurred to alleviate resource limitations under CO_(2)elevation and N addition and highlights the importance of separating biomass into structural biomass and NSC reserves when investigating the eff ects of environmental change on biomass allocation.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10904030)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091301120002)
文摘High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices,
基金the support from National Natural Science Foundation of China (22208355, 22178363 and 21978300)the financial support and mica samples from Changzi Wu and RIKA technology CO., LTD.
文摘The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pressure chemical vapor deposition(APCVD) was investigated. The precursor concentration significantly affected the deposition and morphology of TiO_(2) grains assembling the film. The deposition time for fully covering the surface of mica decreased from 120 to 10 s as the TiCl_(4) concentration increased from 0.38%to 2.44%. The grain size increased with the TiCl_(4) concentration. The AFM and TEM analysis demonstrated that the aggregation of TiO_(2) clusters at the initial stage finally result to the agglomeration of fine TiO_(2) grains at high TiCl_(4) concentrations. Following the results, it was suggested that the nucleation density and size was easy to be adjusted when the TiCl_(4) concentration is below 0.90%.
基金supported by Anadolu University BAP 1407F335 and BAP 1505F271 Projects
文摘Recently, two-dimensional monolayer molybdenum disulfide(MoS_2), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applications in optoelectronics and also thanks to its enhanced catalytic activity which allows it to be used for energy harvesting. However,growth of controllable and high-quality monolayers is still a matter of research and the parameters determining growth mechanism are not completely clear. In this work, chemical vapor deposition is utilized to grow monolayer MoS_2 flakes while deposition duration and temperature effect have been systematically varied to develop a better understanding of the MoS_2 film formation and the influence of these parameters on the quality of the monolayer flakes. Different from previous studies, SEM results show that single-layer MoS_2 flakes do not necessarily grow flat on the surface, but rather they can stay erect and inclined at different angles on the surface, indicating possible gas-phase reactions allowing for monolayer film formation. We have also revealed that process duration influences the amount of MoO_3/MoO_2 within the film network. The homogeneity and the number of layers depend on the change in the desorption–adsorption of radicals together with sulfurization rates, and, inasmuch, a careful optimization of parameters is crucial. Therefore, distinct from the general trend of MoS_2 monolayer formation, our films are rough and heterogeneous with monolayer MoS_2 nanowalls. Despite this roughness and the heterogeneity, we observe a strong photoluminescence located around 675 nm.