Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are st...Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst.展开更多
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas...P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.展开更多
BACKGROUND Accumulating clinical evidence has shown that diabetes mellitus(DM)is a serious risk factor for cardiovascular disorders and an important factor for adverse cardiovascular events.AIM To explore the value of...BACKGROUND Accumulating clinical evidence has shown that diabetes mellitus(DM)is a serious risk factor for cardiovascular disorders and an important factor for adverse cardiovascular events.AIM To explore the value of the combined determination of the neutrophil-lymphocyte ratio(NLR)and red blood cell distribution width(RDW)in the early diagnosis and prognosis evaluation of DM complicated with heart failure(HF).METHODS We retrospectively analyzed clinical data on 65 patients with type 2 DM(T2DM)complicated with HF(research group,Res)and 60 concurrent patients with uncomplicated T2DM(control group,Con)diagnosed at Zhejiang Provincial People’s Hospital between January 2019 and December 2021.The NLR and RDW values were determined and comparatively analyzed,and their levels in T2DM+HF patients with different cardiac function grades were recorded.The receiver operating characteristic(ROC)curves were plotted to determine the NLR and RDW values(alone and in combination)for the early diagnosis of HF.The correlation between NLR and RDW with the presence or absence of cardiac events was also investigated.RESULTS Higher NLR and RDW levels were identified in the Res vs the Con groups(P<0.05).The NLR and RDW increased gradually and synchronously with the deterioration of cardiac function in the Res group,with marked differences in their levels among patients with grade II,III,and IV HF(P<0.05).ROC curve analysis revealed that NLR combined with RDW detection had an area under the curve of 0.915,a sensitivity of 76.9%,and a specificity of 100%for the early diagnosis of HF.Furthermore,HF patients with cardiac events showed higher NLR and RDW values compared with HF patients without cardiac events.CONCLUSION NLR and RDW were useful laboratory indicators for the early diagnosis of DM complicated with HF,and their joint detection was beneficial for improving diagnostic efficiency.Additionally,NLR and RDW values were directly proportional to patient outcomes.展开更多
The 2D NMR(T_(1)-T_(2))mapping technique,which can be used to separate different proton populations from various sources(hydroxyls,solid organic matter,free water,and free HC)has gained attention in petroleum industry...The 2D NMR(T_(1)-T_(2))mapping technique,which can be used to separate different proton populations from various sources(hydroxyls,solid organic matter,free water,and free HC)has gained attention in petroleum industry.To separate proton contributions,a fixed straight line is commonly employed to separate different regions representing proton sources on the map.However,some of these regions(Region 1 and 2)might overlap which makes extracting the NMR signal amplitude from these regions inaccurate.In order to solve this issue,in this study,we applied the Gaussian distribution deconvolution method to separate the T_(1)and T_(2)relaxation distributions and then derived the signal amplitude of each region instead of following the common fixed line approach.Next,we employed this method to analyze several shale samples from the literature and compared the results following both methods to verify our methodology.Finally,samples from the Bakken Shale were studied to separate signals from Region 1 and Region 2 and corelated the results with geochemical properties that were obtained from programmed(Rock Eval)pyrolysis.Results demonstrated an improvement in their relation when our approach is employed compared to the fixed line technique to differentiate signal from overlapping regions.This means the Gaussian distribution deconvolution method can be used with confidence to provide us with more accurate petrophysical and geochemical understanding of complex formations.展开更多
To investigate the effect of low energy ion implantation on maize pollen germination and cytosolic Ca2+ distribution during pollen germination process, the argon ion (Ar+) with energy of 30 keV, dose of 0.78 ×101...To investigate the effect of low energy ion implantation on maize pollen germination and cytosolic Ca2+ distribution during pollen germination process, the argon ion (Ar+) with energy of 30 keV, dose of 0.78 ×1015-13×1015 ion/cm2 was implanted into maize pollen by irradiation, and the germination of pollen and cytosolic Ca2+ distribution during pollen germination process of the Ar+ implanted pollen were studied. The results showed that when been irradiated with Ar+ with dose of 5.2×1015 ion/cm2, the germination rate of maize pollen increased remarkably, while implantation of ions with dose exceeding 5.2×1015 ion/cm2 sharply decreased the germination rate of maize pollen. Meanwhile, tracing of esterified Ca2+ fluorescence probe fluo-3 AM for intact pollen showed that variation of cytosolic Ca2+ concentration was consistent with the change of pollen fertility. The dynamics of cytosolic Ca2+ concentration caused by low energy ion implantation may be concluded as the initial effects of pollen germination.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51708078)Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0815)+2 种基金Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202200542)the Chongqing Innovative Research Group Project(Grant No.CXQT21015)Foundation of Chongqing Normal University(22XLB022).
文摘Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst.
基金supported by the National Natural Science Foundation of China (22169002)the Chongzuo Key Research and Development Program of China (20220603)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)
文摘P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.
基金Supported by Zhejiang Province Traditional Chinese Medicine Science and 158 Technology Project,No.2023ZL008.
文摘BACKGROUND Accumulating clinical evidence has shown that diabetes mellitus(DM)is a serious risk factor for cardiovascular disorders and an important factor for adverse cardiovascular events.AIM To explore the value of the combined determination of the neutrophil-lymphocyte ratio(NLR)and red blood cell distribution width(RDW)in the early diagnosis and prognosis evaluation of DM complicated with heart failure(HF).METHODS We retrospectively analyzed clinical data on 65 patients with type 2 DM(T2DM)complicated with HF(research group,Res)and 60 concurrent patients with uncomplicated T2DM(control group,Con)diagnosed at Zhejiang Provincial People’s Hospital between January 2019 and December 2021.The NLR and RDW values were determined and comparatively analyzed,and their levels in T2DM+HF patients with different cardiac function grades were recorded.The receiver operating characteristic(ROC)curves were plotted to determine the NLR and RDW values(alone and in combination)for the early diagnosis of HF.The correlation between NLR and RDW with the presence or absence of cardiac events was also investigated.RESULTS Higher NLR and RDW levels were identified in the Res vs the Con groups(P<0.05).The NLR and RDW increased gradually and synchronously with the deterioration of cardiac function in the Res group,with marked differences in their levels among patients with grade II,III,and IV HF(P<0.05).ROC curve analysis revealed that NLR combined with RDW detection had an area under the curve of 0.915,a sensitivity of 76.9%,and a specificity of 100%for the early diagnosis of HF.Furthermore,HF patients with cardiac events showed higher NLR and RDW values compared with HF patients without cardiac events.CONCLUSION NLR and RDW were useful laboratory indicators for the early diagnosis of DM complicated with HF,and their joint detection was beneficial for improving diagnostic efficiency.Additionally,NLR and RDW values were directly proportional to patient outcomes.
基金support from the National Natural Science Foundation of China(42090020,42090025,42272150)the Sinopec Science and Technology Department(No.P20049-1).
文摘The 2D NMR(T_(1)-T_(2))mapping technique,which can be used to separate different proton populations from various sources(hydroxyls,solid organic matter,free water,and free HC)has gained attention in petroleum industry.To separate proton contributions,a fixed straight line is commonly employed to separate different regions representing proton sources on the map.However,some of these regions(Region 1 and 2)might overlap which makes extracting the NMR signal amplitude from these regions inaccurate.In order to solve this issue,in this study,we applied the Gaussian distribution deconvolution method to separate the T_(1)and T_(2)relaxation distributions and then derived the signal amplitude of each region instead of following the common fixed line approach.Next,we employed this method to analyze several shale samples from the literature and compared the results following both methods to verify our methodology.Finally,samples from the Bakken Shale were studied to separate signals from Region 1 and Region 2 and corelated the results with geochemical properties that were obtained from programmed(Rock Eval)pyrolysis.Results demonstrated an improvement in their relation when our approach is employed compared to the fixed line technique to differentiate signal from overlapping regions.This means the Gaussian distribution deconvolution method can be used with confidence to provide us with more accurate petrophysical and geochemical understanding of complex formations.
基金Supported by National Natural Science Foundation of China(10675002)~~
文摘To investigate the effect of low energy ion implantation on maize pollen germination and cytosolic Ca2+ distribution during pollen germination process, the argon ion (Ar+) with energy of 30 keV, dose of 0.78 ×1015-13×1015 ion/cm2 was implanted into maize pollen by irradiation, and the germination of pollen and cytosolic Ca2+ distribution during pollen germination process of the Ar+ implanted pollen were studied. The results showed that when been irradiated with Ar+ with dose of 5.2×1015 ion/cm2, the germination rate of maize pollen increased remarkably, while implantation of ions with dose exceeding 5.2×1015 ion/cm2 sharply decreased the germination rate of maize pollen. Meanwhile, tracing of esterified Ca2+ fluorescence probe fluo-3 AM for intact pollen showed that variation of cytosolic Ca2+ concentration was consistent with the change of pollen fertility. The dynamics of cytosolic Ca2+ concentration caused by low energy ion implantation may be concluded as the initial effects of pollen germination.