The vast osteocytic network is believed to orchestrate bone metabolic activity in response to mechanical stimuli through production of sclerostin, RANKL, and osteoprotegerin(OPG). However, the mechanisms of osteocyte ...The vast osteocytic network is believed to orchestrate bone metabolic activity in response to mechanical stimuli through production of sclerostin, RANKL, and osteoprotegerin(OPG). However, the mechanisms of osteocyte mechanotransduction remain poorly understood. We've previously shown that osteocyte mechanosensitivity is encoded through unique intracellular calcium (Ca^(2+) ) dynamics. Here, by simultaneously monitoring Ca^(2+) and actin dynamics in single cells exposed to fluid shear flow, we detected actin network contractions immediately upon onset of flow-induced Ca^(2+) transients, which were facilitated by smooth muscle myosin and further confirmed in native osteocytes ex vivo. Actomyosin contractions have been linked to the secretion of extracellular vesicles(EVs), and our studies demonstrate that mechanical stimulation upregulates EV production in osteocytes through immunostaining for the secretory vesicle marker Lysosomal-associated membrane protein 1(LAMP1) and quantifying EV release in conditioned medium, both of which are blunted when Ca^(2+) signaling was inhibited by neomycin. Axial tibia compression was used to induce anabolic bone formation responses in mice, revealing upregulated LAMP1 and expected downregulation of sclerostin in vivo. This load-related increase in LAMP1 expression was inhibited in neomycin-injected mice compared to vehicle.Micro-computed tomography revealed significant load-related increases in both trabecular bone volume fraction and cortical thickness after two weeks of loading, which were blunted by neomycin treatment. In summary, we found mechanical stimulation of osteocytes activates Ca^(2+) -dependent contractions and enhances the production and release of EVs containing bone regulatory proteins. Further, blocking Ca^(2+) signaling significantly attenuates adaptation to mechanical loading in vivo, suggesting a critical role for Ca^(2+) -mediated signaling in bone adaptation.展开更多
Objective:To study the effects of 18β-glycyrrhetinic acid (GA) on proliferation inhibition, apop totic induction, and the relationship between GA-induced apoptosis and intracellular Ca2+ concentration in human breast...Objective:To study the effects of 18β-glycyrrhetinic acid (GA) on proliferation inhibition, apop totic induction, and the relationship between GA-induced apoptosis and intracellular Ca2+ concentration in human breast carcinoma (MCF-7) cells. Methods: After MCF-7 cells were treated with GA at the concentrations from 50 μmol/L to 250 μmol/L for 24 h, cell viability of proliferation was assessed by MTT assay. After the cells were treated with 100 μmol/L, 150 μmol/L, and 200 μmol/L GA for 24 h, the rates of cell apoptosis were examined by terminal deoxynucleotide transferase mediated dUTP nick-end-labeling method and flow cytometry with Annexin V/propidium iodide fluorescent stain. After the cells treated with 150 μmol/L GA for 24 h, intracellular Ca2+ concentration was measured by Fure-2 fluorescein load method. Results: After the cells were treated with GA at the concentrations from 100 μmol/L to 250 μmol/L, the rates of proliferative inhibition were increased significantly (P<0.05 and P<0.01) in a dose dependent fashion. IC50 of the proliferation inhibition was 234.33 μmol/L. Treated with 100 μmol/L, 150 μmol/L, and 200 μmol/L, the rates of cell apoptosis were increased significantly (P<0.01). Intracellular Ca2+ concentration after treatment with GA was higher evidently than that of control (P<0.05). Conclusion: 18β-glycyrrhetinic acid has the effects of the proliferation inhibition and the apoptotic induction on MCF-7 cells. The rise of intracellular Ca2+ level may be depended on apoptosis induced by GA in MCF-7 cells.展开更多
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(...It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.展开更多
Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in viv...Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.展开更多
AIM To investigate the protective mechanism of mitofusin-2 (Mfn2) in rat remote ischemic perconditioning (RIC) models and revalidate it in alpha mouse liver-12 (AML-12) hypoxia cell lines. METHODS Sprague-Dawley rats ...AIM To investigate the protective mechanism of mitofusin-2 (Mfn2) in rat remote ischemic perconditioning (RIC) models and revalidate it in alpha mouse liver-12 (AML-12) hypoxia cell lines. METHODS Sprague-Dawley rats were divided into three groups (n = 6 each): sham, orthotopic liver transplantation and RIC. After operation, blood samples were collected to test alanine aminotransferase and aspartate aminotransferase. The liver lobes were harvested for histopathological examination, western blotting (WB) and quantitative real-time (qRT)-PCR. AML-12 cell lines were then subjected to normal culture, anoxic incubator tank culture (hypoxia) and anoxic incubator tank culture with Mfn2 knockdown (hypoxia + Si), and data of qRT-PCR, WB, mitochondrial membrane potential (Delta psi m), apoptosis, endoplasmic reticulum Ca2+ concentrations and mitochondrial Ca2+ concentrations were collected. RESULTS Both sham and normal culture groups showed no injury during the experiment. The RIC group showed amelioration of liver function compared with the orthotopic liver transplantation group (P < 0.05). qRTPCR and WB confirmed that Mfn2-mitochondrial Ca2+ uptake 1/2 (MICUs) axis was changed (P < 0.005). In AML-12 cell lines, compared with the hypoxia group, the hypoxia + Si group attenuated the collapse of..m and apoptosis (P < 0.005). The endoplasmic reticulum Ca2+ decrease and mitochondrial Ca2+ overloading observed in the hypoxia group were also attenuated in the hypoxia + Si group (P < 0.005). Finally, qRT-PCR and WB confirmed the Mfn2-MICUs axis change in all the groups (P < 0.005). CONCLUSION Mfn2 participates in liver injury in rat RIC models and AML-12 hypoxia cell lines by regulating the MICUs pathway.展开更多
Objective To observe the effects of signal factors of corticosterone (CS), cAMP, cGMP, Ca^2+ and protein kinase C (PKC) on lymphocyte apoptosis in mouse thymus induced by X-rays of 4 Gy in vitro. Methods The DNA ...Objective To observe the effects of signal factors of corticosterone (CS), cAMP, cGMP, Ca^2+ and protein kinase C (PKC) on lymphocyte apoptosis in mouse thymus induced by X-rays of 4 Gy in vitro. Methods The DNA lyric rate for thymocytes was measured by fluomspectrophotometry. Results The DNA lyric rate for thymocytes 4-8 hours after irradiation with 2-8 Gy was significantly higher than that in the control (P〈0.01). As compared with the control, the DNA lyric rate for thymocytes treated with 0.01 μnol/L CS (P〈0.01), 50 ng/mL cAMP (P〈0.01), 0.05-0.4 μg/mL ionomycin (Iono, P〈0.05 or P〈0.01) or 0.05-0.4 ng/mL phorbol myristate acetate (PMA, P〈0.05 or P〈0.01), respectively, was significantly increased, while the rate for thymocytes treated with 50 ng/mL cGMP was not significantly increased. The DNA lyric rate for thymocytes treated with 0.01 μmol/L CS (P〈0.01), 50 ng/mL cAMP (P〈0.01), 0.2 and 0.4 μg/mL Iono (P〈0.05), and 0.2 and 0.4 ng/mL PMA (P〈0.05) plus 4-Gy irradiation, respectively, was significantly higher than that treated with single 4-Gy irradiation, while the rate for thymocytes treated with 50 ng/mL cGMP plus 4-Gy irradiation was not increased. When both 0.4 I.tg/mL Iono and 0.4 ng/mL PMA acted on the thymocytes, the DNA lyric rate for thymocytes was significantly higher than that in the control (P〈0.01), the DNA lytic rate for thymocytes treated with both 0.4 μg/mL Iono and 0.4 ng/mL PMA plus 4-Gy irradiation was significantly higher than that treated with single 4-Gy irradiation (P〈0.05), but was Iono plus 4-Gy irradiation or 0.4 ng/mL PMA plus 4-Gy irradiation. can promote thymocyte apoptosis induced by larger dose X-rays. not significantly higher than that treated with 0.4 μg/mL Conclusion CS, cAMP, Ca^2+, and PKC signal factors can promote thymocyte apoptosis induced by larger dose X-rays.展开更多
Object. The effects of ATP-introduced a rise in cytosolic free Ca2+ concentration and inhibition of nitric oxide were investigated. Method. Measurement of free Ca2+([Ca2+] i)of cultured rat tail arterial smooth muscle...Object. The effects of ATP-introduced a rise in cytosolic free Ca2+ concentration and inhibition of nitric oxide were investigated. Method. Measurement of free Ca2+([Ca2+] i)of cultured rat tail arterial smooth muscle cells using Fura-2/AM dual excitation wavelength spectrofluorometer. Results. There are two components of [Ca2+] i can be evoked by ATP. One part is Ca2+ entry from Ca2+ channel and formed a plateau. The another part is a peak that released from Ca2+ store. Both of them can be inhibited by NO. Conclusion. The ATP induced [Ca2+] i rise that release Ca2+ from both Insp 3 and ryanochine receptors and Ca2+ entry through calcium channels. The inhibition of NO on ATP induced [Ca2+] i rise that was mediated by cGMP.展开更多
基金supported by NIH R01 AR052461 and NIH R01 AR069148supported by a NSF Graduate Research Fellowship. A. E. M.supported by training grant T32 AR059038
文摘The vast osteocytic network is believed to orchestrate bone metabolic activity in response to mechanical stimuli through production of sclerostin, RANKL, and osteoprotegerin(OPG). However, the mechanisms of osteocyte mechanotransduction remain poorly understood. We've previously shown that osteocyte mechanosensitivity is encoded through unique intracellular calcium (Ca^(2+) ) dynamics. Here, by simultaneously monitoring Ca^(2+) and actin dynamics in single cells exposed to fluid shear flow, we detected actin network contractions immediately upon onset of flow-induced Ca^(2+) transients, which were facilitated by smooth muscle myosin and further confirmed in native osteocytes ex vivo. Actomyosin contractions have been linked to the secretion of extracellular vesicles(EVs), and our studies demonstrate that mechanical stimulation upregulates EV production in osteocytes through immunostaining for the secretory vesicle marker Lysosomal-associated membrane protein 1(LAMP1) and quantifying EV release in conditioned medium, both of which are blunted when Ca^(2+) signaling was inhibited by neomycin. Axial tibia compression was used to induce anabolic bone formation responses in mice, revealing upregulated LAMP1 and expected downregulation of sclerostin in vivo. This load-related increase in LAMP1 expression was inhibited in neomycin-injected mice compared to vehicle.Micro-computed tomography revealed significant load-related increases in both trabecular bone volume fraction and cortical thickness after two weeks of loading, which were blunted by neomycin treatment. In summary, we found mechanical stimulation of osteocytes activates Ca^(2+) -dependent contractions and enhances the production and release of EVs containing bone regulatory proteins. Further, blocking Ca^(2+) signaling significantly attenuates adaptation to mechanical loading in vivo, suggesting a critical role for Ca^(2+) -mediated signaling in bone adaptation.
文摘Objective:To study the effects of 18β-glycyrrhetinic acid (GA) on proliferation inhibition, apop totic induction, and the relationship between GA-induced apoptosis and intracellular Ca2+ concentration in human breast carcinoma (MCF-7) cells. Methods: After MCF-7 cells were treated with GA at the concentrations from 50 μmol/L to 250 μmol/L for 24 h, cell viability of proliferation was assessed by MTT assay. After the cells were treated with 100 μmol/L, 150 μmol/L, and 200 μmol/L GA for 24 h, the rates of cell apoptosis were examined by terminal deoxynucleotide transferase mediated dUTP nick-end-labeling method and flow cytometry with Annexin V/propidium iodide fluorescent stain. After the cells treated with 150 μmol/L GA for 24 h, intracellular Ca2+ concentration was measured by Fure-2 fluorescein load method. Results: After the cells were treated with GA at the concentrations from 100 μmol/L to 250 μmol/L, the rates of proliferative inhibition were increased significantly (P<0.05 and P<0.01) in a dose dependent fashion. IC50 of the proliferation inhibition was 234.33 μmol/L. Treated with 100 μmol/L, 150 μmol/L, and 200 μmol/L, the rates of cell apoptosis were increased significantly (P<0.01). Intracellular Ca2+ concentration after treatment with GA was higher evidently than that of control (P<0.05). Conclusion: 18β-glycyrrhetinic acid has the effects of the proliferation inhibition and the apoptotic induction on MCF-7 cells. The rise of intracellular Ca2+ level may be depended on apoptosis induced by GA in MCF-7 cells.
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3504100,2022YFB3506200)the National Natural Science Foundation of China(Nos.22208373,22376217)+1 种基金the Beijing Nova Program(No.20220484215)the Science Foundation of China University of Petroleum,Beijing(No.2462023YJRC030)。
文摘It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.
基金supported by the Natural Science Foundation of Fujian Province,No.2020J02027the National Natural Science Foundation of China,No.31970461the Foundation of NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,Fujian Maternity and Child Health Hospital,No.2022-NHP-05(all to WC).
文摘Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.
基金Supported by Science and Technology Innovation Talents Support Plan,Department of Education,Henan Province,China,No.17HASTIT044China Postdoctoral Science Foundation,No.2017M610374
文摘AIM To investigate the protective mechanism of mitofusin-2 (Mfn2) in rat remote ischemic perconditioning (RIC) models and revalidate it in alpha mouse liver-12 (AML-12) hypoxia cell lines. METHODS Sprague-Dawley rats were divided into three groups (n = 6 each): sham, orthotopic liver transplantation and RIC. After operation, blood samples were collected to test alanine aminotransferase and aspartate aminotransferase. The liver lobes were harvested for histopathological examination, western blotting (WB) and quantitative real-time (qRT)-PCR. AML-12 cell lines were then subjected to normal culture, anoxic incubator tank culture (hypoxia) and anoxic incubator tank culture with Mfn2 knockdown (hypoxia + Si), and data of qRT-PCR, WB, mitochondrial membrane potential (Delta psi m), apoptosis, endoplasmic reticulum Ca2+ concentrations and mitochondrial Ca2+ concentrations were collected. RESULTS Both sham and normal culture groups showed no injury during the experiment. The RIC group showed amelioration of liver function compared with the orthotopic liver transplantation group (P < 0.05). qRTPCR and WB confirmed that Mfn2-mitochondrial Ca2+ uptake 1/2 (MICUs) axis was changed (P < 0.005). In AML-12 cell lines, compared with the hypoxia group, the hypoxia + Si group attenuated the collapse of..m and apoptosis (P < 0.005). The endoplasmic reticulum Ca2+ decrease and mitochondrial Ca2+ overloading observed in the hypoxia group were also attenuated in the hypoxia + Si group (P < 0.005). Finally, qRT-PCR and WB confirmed the Mfn2-MICUs axis change in all the groups (P < 0.005). CONCLUSION Mfn2 participates in liver injury in rat RIC models and AML-12 hypoxia cell lines by regulating the MICUs pathway.
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 391702750)
文摘Objective To observe the effects of signal factors of corticosterone (CS), cAMP, cGMP, Ca^2+ and protein kinase C (PKC) on lymphocyte apoptosis in mouse thymus induced by X-rays of 4 Gy in vitro. Methods The DNA lyric rate for thymocytes was measured by fluomspectrophotometry. Results The DNA lyric rate for thymocytes 4-8 hours after irradiation with 2-8 Gy was significantly higher than that in the control (P〈0.01). As compared with the control, the DNA lyric rate for thymocytes treated with 0.01 μnol/L CS (P〈0.01), 50 ng/mL cAMP (P〈0.01), 0.05-0.4 μg/mL ionomycin (Iono, P〈0.05 or P〈0.01) or 0.05-0.4 ng/mL phorbol myristate acetate (PMA, P〈0.05 or P〈0.01), respectively, was significantly increased, while the rate for thymocytes treated with 50 ng/mL cGMP was not significantly increased. The DNA lyric rate for thymocytes treated with 0.01 μmol/L CS (P〈0.01), 50 ng/mL cAMP (P〈0.01), 0.2 and 0.4 μg/mL Iono (P〈0.05), and 0.2 and 0.4 ng/mL PMA (P〈0.05) plus 4-Gy irradiation, respectively, was significantly higher than that treated with single 4-Gy irradiation, while the rate for thymocytes treated with 50 ng/mL cGMP plus 4-Gy irradiation was not increased. When both 0.4 I.tg/mL Iono and 0.4 ng/mL PMA acted on the thymocytes, the DNA lyric rate for thymocytes was significantly higher than that in the control (P〈0.01), the DNA lytic rate for thymocytes treated with both 0.4 μg/mL Iono and 0.4 ng/mL PMA plus 4-Gy irradiation was significantly higher than that treated with single 4-Gy irradiation (P〈0.05), but was Iono plus 4-Gy irradiation or 0.4 ng/mL PMA plus 4-Gy irradiation. can promote thymocyte apoptosis induced by larger dose X-rays. not significantly higher than that treated with 0.4 μg/mL Conclusion CS, cAMP, Ca^2+, and PKC signal factors can promote thymocyte apoptosis induced by larger dose X-rays.
文摘Object. The effects of ATP-introduced a rise in cytosolic free Ca2+ concentration and inhibition of nitric oxide were investigated. Method. Measurement of free Ca2+([Ca2+] i)of cultured rat tail arterial smooth muscle cells using Fura-2/AM dual excitation wavelength spectrofluorometer. Results. There are two components of [Ca2+] i can be evoked by ATP. One part is Ca2+ entry from Ca2+ channel and formed a plateau. The another part is a peak that released from Ca2+ store. Both of them can be inhibited by NO. Conclusion. The ATP induced [Ca2+] i rise that release Ca2+ from both Insp 3 and ryanochine receptors and Ca2+ entry through calcium channels. The inhibition of NO on ATP induced [Ca2+] i rise that was mediated by cGMP.