Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in viv...Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.展开更多
Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer...Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer remain elusive.It is important to decipher the comprehensive epigenetic regulatory network in breast cancer cells to identify master epigenetic regulators and potential therapeutic targets.Methods:We employed high-throughput sequencing-based high-throughput screening(HTS^(2))to effectively detect changes in the expression of 2,986 genes following the knockdown of 400 epigenetic regulators.Then,bioinformatics analysis tools were used for the resulting gene expression signatures to investigate the epigenetic regulations in breast cancer.Results:Utilizing these gene expression signatures,we classified the epigenetic regulators into five distinct clusters,each characterized by specific functions.We discovered functional similarities between BAZ2B and SETMAR,as well as CLOCK and CBX3.Moreover,we observed that CLOCK functions in a manner opposite to that of HDAC8 in downstream gene regulation.Notably,we constructed an epigenetic regulatory network based on the gene expression signatures,which revealed 8 distinct modules and identified 10 master epigenetic regulators in breast cancer.Conclusions:Our work deciphered the extensive regulation among hundreds of epigenetic regulators.The identification of 10 master epigenetic regulators offers promising therapeutic targets for breast cancer treatment.展开更多
Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress o...Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re...Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.展开更多
Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate ...Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%.展开更多
Background:KMT2(lysine methyltransferase)family enzymes are epigenetic regulators that activate gene transcription.KMT2C is mainly involved in enhancer-associated H3K4me1,and is also one of the top mutated genes in ca...Background:KMT2(lysine methyltransferase)family enzymes are epigenetic regulators that activate gene transcription.KMT2C is mainly involved in enhancer-associated H3K4me1,and is also one of the top mutated genes in cancer(6.6%in pan-cancer).Currently,the clinical significance of KMT2C mutations in prostate cancer is understudied.Methods:We included 221 prostate cancer patients diagnosed between 2014 and 2021 in West China Hospital of Sichuan University with cell-free DNA-based liquid biopsy test results in this study.We investigated the association between KMT2C mutations,other mutations,and pathways.Furthermore,we evaluated the prognostic value of KMT2C mutations,measured by overall survival(OS)and castration resistance-free survival(CRFS).Also,we explored the prognostic value of KMT2C mutations in different patient subgroups.Lastly,we investigated the predictive value of KMT2C mutations in individuals receiving conventional combined anti-androgen blockade(CAB)and abiraterone(ABI)as measured by PSA progression-free survival(PSA-PFS).Results:The KMT2C mutation rate in this cohort is 7.24%(16/221).KMT2C-mutated patients showed worse survival than KMT2C-wild type(WT)patients regarding both CRFS and OS(CRFS:mutated:9.9 vs.WT:22.0 months,p=0.015;OS:mutated:71.9 vs.WT 137.4 months,p=0.012).KMT2C mutations were also an independent risk factor in OS[hazard ratio:3.815(1.461,9.96),p=0.006]in multivariate analyses.Additionally,we explored the association of KMT2C mutations with other genes.This showed that KMT2C mutations were associated with Serine/Threonine-Protein Kinase 11(STK11,p=0.004)and Catenin Beta 1(CTNNB1,p=0.008)mutations.In the CAB treatment,KMT2C-mutated patients had a significantly shorter PSA-PFS compared to KMT2C-WT patients.(PSA-PFS:mutated:9.9 vs.WT:17.6 months,p=0.014).Moreover,KMT2C mutations could effectively predict shorter PSA-PFS in 10 out of 23 subgroups and exhibited a strong trend in the remaining subgroups.Conclusions:KMT2C-mutated patients showed worse survival compared to KMT2C-WT patients in terms of both CRFS and OS,and KMT2C mutations were associated with STK11 and CTNNB1 mutations.Furthermore,KMT2C mutations indicated rapid progression during CAB therapy and could serve as a potential biomarker to predict therapeutic response in prostate cancer.展开更多
Objective:To study the effects of silent information regulator of transcription 2 (SIRT2) on inflammatory response and bone destruction in cartilage tissue of osteoarthritis.Methods: A total of 200 patients who underw...Objective:To study the effects of silent information regulator of transcription 2 (SIRT2) on inflammatory response and bone destruction in cartilage tissue of osteoarthritis.Methods: A total of 200 patients who underwent knee replacement due to knee osteoarthritis in Kashgar Prefecture First People's Hospital between September 2014 and September 2017 were selected as the osteoarthritis (OA) group of the research, and 80 patients who underwent knee replacement or meniscus operation due to trauma in Kashgar Prefecture First People's Hospital during the same period were selected as the control group. Articular cartilage tissue was collected after surgery to measure the expression of SIRT2 and bone destruction-related apoptosis molecules as well as the levels of inflammatory response molecules and bone destruction-related collagen metabolism molecules.Results: SIRT2 and Bcl-2 mRNA expression as well as SOX9 and Col-II levels in articular cartilage tissue of OA group were significantly lower than those of control group whereas TNF-α, bFGF, NO, IP-10, CCL2, PAR-2,β-catenin, OPN and MMP13 levels as well as Fas, GRP78, ATF6 and Caspase-3 mRNA expression were significantly higher than those of control group;SIRT2 mRNA expression in articular cartilage tissue of OA group was positively correlated with Bcl-2 mRNA expression as well as SOX9 and Col-II levels, and negatively correlated with TNF-α, bFGF, NO, IP-10, CCL2, PAR-2,β-catenin, OPN and MMP13 levels as well as Fas, GRP78, ATF6 and Caspase-3 mRNA expression.Conclusion: The lowly expressed SIRT2 in cartilage of osteoarthritis can aggravate inflammatory response and bone destruction.展开更多
基金supported by the Natural Science Foundation of Fujian Province,No.2020J02027the National Natural Science Foundation of China,No.31970461the Foundation of NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,Fujian Maternity and Child Health Hospital,No.2022-NHP-05(all to WC).
文摘Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82172723)the Natural Science Foundation of Sichuan(Grant Nos.2023NSFSC1828 and 2022NSFSC1289)+2 种基金the“Xinglin Scholar”Scientific Research Promotion Plan of Chengdu University of Transitional Chinese Medicine(Grant No.BSH2021003)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(Grant No.ZYYCXTD-D-202209)the Research Funding of Department of Science and Technology of Qinghai Province(Grant No.2023-ZJ-729)。
文摘Objective:Epigenetic abnormalities have a critical role in breast cancer by regulating gene expression;however,the intricate interrelationships and key roles of approximately 400 epigenetic regulators in breast cancer remain elusive.It is important to decipher the comprehensive epigenetic regulatory network in breast cancer cells to identify master epigenetic regulators and potential therapeutic targets.Methods:We employed high-throughput sequencing-based high-throughput screening(HTS^(2))to effectively detect changes in the expression of 2,986 genes following the knockdown of 400 epigenetic regulators.Then,bioinformatics analysis tools were used for the resulting gene expression signatures to investigate the epigenetic regulations in breast cancer.Results:Utilizing these gene expression signatures,we classified the epigenetic regulators into five distinct clusters,each characterized by specific functions.We discovered functional similarities between BAZ2B and SETMAR,as well as CLOCK and CBX3.Moreover,we observed that CLOCK functions in a manner opposite to that of HDAC8 in downstream gene regulation.Notably,we constructed an epigenetic regulatory network based on the gene expression signatures,which revealed 8 distinct modules and identified 10 master epigenetic regulators in breast cancer.Conclusions:Our work deciphered the extensive regulation among hundreds of epigenetic regulators.The identification of 10 master epigenetic regulators offers promising therapeutic targets for breast cancer treatment.
基金Supported by Capital Medical University Scientific Research Grant for Undergraduate Students(No.XSKY2023026).
文摘Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.
基金financially supported by the National Natural Science Foundation of China(22309032)the Guangdong Basic and Applied Basic Research Foundation(2022A1515011737)+1 种基金the Science and Technology Program of Guangzhou(2023A04J1395)the GDAS’Project of Science and Technology Development(2021GDASYL-20210102010)。
文摘Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%.
基金This work was supported by the Natural Science Foundation of China(NSFC 81902577)the Research Foundation for the Postdoctoral Program of Sichuan University(2021SCU12014).
文摘Background:KMT2(lysine methyltransferase)family enzymes are epigenetic regulators that activate gene transcription.KMT2C is mainly involved in enhancer-associated H3K4me1,and is also one of the top mutated genes in cancer(6.6%in pan-cancer).Currently,the clinical significance of KMT2C mutations in prostate cancer is understudied.Methods:We included 221 prostate cancer patients diagnosed between 2014 and 2021 in West China Hospital of Sichuan University with cell-free DNA-based liquid biopsy test results in this study.We investigated the association between KMT2C mutations,other mutations,and pathways.Furthermore,we evaluated the prognostic value of KMT2C mutations,measured by overall survival(OS)and castration resistance-free survival(CRFS).Also,we explored the prognostic value of KMT2C mutations in different patient subgroups.Lastly,we investigated the predictive value of KMT2C mutations in individuals receiving conventional combined anti-androgen blockade(CAB)and abiraterone(ABI)as measured by PSA progression-free survival(PSA-PFS).Results:The KMT2C mutation rate in this cohort is 7.24%(16/221).KMT2C-mutated patients showed worse survival than KMT2C-wild type(WT)patients regarding both CRFS and OS(CRFS:mutated:9.9 vs.WT:22.0 months,p=0.015;OS:mutated:71.9 vs.WT 137.4 months,p=0.012).KMT2C mutations were also an independent risk factor in OS[hazard ratio:3.815(1.461,9.96),p=0.006]in multivariate analyses.Additionally,we explored the association of KMT2C mutations with other genes.This showed that KMT2C mutations were associated with Serine/Threonine-Protein Kinase 11(STK11,p=0.004)and Catenin Beta 1(CTNNB1,p=0.008)mutations.In the CAB treatment,KMT2C-mutated patients had a significantly shorter PSA-PFS compared to KMT2C-WT patients.(PSA-PFS:mutated:9.9 vs.WT:17.6 months,p=0.014).Moreover,KMT2C mutations could effectively predict shorter PSA-PFS in 10 out of 23 subgroups and exhibited a strong trend in the remaining subgroups.Conclusions:KMT2C-mutated patients showed worse survival compared to KMT2C-WT patients in terms of both CRFS and OS,and KMT2C mutations were associated with STK11 and CTNNB1 mutations.Furthermore,KMT2C mutations indicated rapid progression during CAB therapy and could serve as a potential biomarker to predict therapeutic response in prostate cancer.
文摘Objective:To study the effects of silent information regulator of transcription 2 (SIRT2) on inflammatory response and bone destruction in cartilage tissue of osteoarthritis.Methods: A total of 200 patients who underwent knee replacement due to knee osteoarthritis in Kashgar Prefecture First People's Hospital between September 2014 and September 2017 were selected as the osteoarthritis (OA) group of the research, and 80 patients who underwent knee replacement or meniscus operation due to trauma in Kashgar Prefecture First People's Hospital during the same period were selected as the control group. Articular cartilage tissue was collected after surgery to measure the expression of SIRT2 and bone destruction-related apoptosis molecules as well as the levels of inflammatory response molecules and bone destruction-related collagen metabolism molecules.Results: SIRT2 and Bcl-2 mRNA expression as well as SOX9 and Col-II levels in articular cartilage tissue of OA group were significantly lower than those of control group whereas TNF-α, bFGF, NO, IP-10, CCL2, PAR-2,β-catenin, OPN and MMP13 levels as well as Fas, GRP78, ATF6 and Caspase-3 mRNA expression were significantly higher than those of control group;SIRT2 mRNA expression in articular cartilage tissue of OA group was positively correlated with Bcl-2 mRNA expression as well as SOX9 and Col-II levels, and negatively correlated with TNF-α, bFGF, NO, IP-10, CCL2, PAR-2,β-catenin, OPN and MMP13 levels as well as Fas, GRP78, ATF6 and Caspase-3 mRNA expression.Conclusion: The lowly expressed SIRT2 in cartilage of osteoarthritis can aggravate inflammatory response and bone destruction.