The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X...The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.展开更多
Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches ...Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode materials for PIBs are badly absent.Herein,we synthesize K-deficient layered manganese-based oxides(P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2))and investigate them as cathode of PIBs for the first time.As the newcomer of potassium-containing layered manganese-based oxides(K_(x)MnO_(2))group,P2-K_(0.21)MnO_(2) delivers high discharge capacity of 99.3 mAh g^(-1) and P3-K_(0.23)MnO_(2) exhibits remarkable capacity retention rate of 75.5%.Besides,in-situ XRD and ex-situ XRD measurements reveal the reversible phase transition of P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2) with the potassium-ions extraction and reinsertion,respectively.This work contributes to a better understanding for the potassium storage in K-deficient layered K_(x)MnO_(2)(x≤0.23),possessing an important basic scientific significance for the exploitation and application of layered K_(x)MnO_(2) in PIBs.展开更多
In order to investigate whether an air–water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas...In order to investigate whether an air–water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas(air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH(A;Σ;–X;Π;) and O(3p;P–3s;S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53–9.58 mg l;, depending on the gas/water mixture ratio. The production of OH(A;Σ;–X;Π;) rises with the increase of water content, whereas the O(3p;P–3s;S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air–water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH(A;Σ;–X;Π;) is a more effective species in inactivation than O(3p;P–3s;S) and the water content benefit the spore germination inhibition through rising the OH(A;Σ;–X;Π;) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l;.展开更多
Head and neck squamous cell carcinoma is the sixth most common cancer in the world with approximately650000 new cases diagnosed annually.Next-generation molecular techniques and results from phase 2 of the Cancer Geno...Head and neck squamous cell carcinoma is the sixth most common cancer in the world with approximately650000 new cases diagnosed annually.Next-generation molecular techniques and results from phase 2 of the Cancer Genome Atlas becoming available have drastically improved our current knowledge on the genetics basis of head and neck squamous cell carcinoma.New insights and new perspectives on the mutational landscape implicated in head and neck squamous cell carcinoma provide improved tools for prognostication.More importantly,depend on the patient's tumor subtypes and prognosis,deescalated or more aggressive therapy maybe chosen to achieve greater potency while minimizing the toxicity of therapy.This paper aims to review our current knowledge on the genetic mutations and altered molecular pathways in head and neck squamous cell carcinoma.Some of the most common mutations in head and neck squamous cell carcinoma reported by the cancer genome atlas including TP53,NOTCH1,Rb,CDKN2 A,Ras,PIK3 CA and EGFR are described here.Additionally,the emerging role of epigenetics and the role of human papilloma virus in head and neck squamous cell carcinoma are also discussed in this review.The molecular pathways,clinical applications,actionable molecular targets and potential therapeutic strategies are highlighted and discussed in details.展开更多
Phosphatidylinositol 3-kinases(PI3Ks)play key roles in tumorigenesis.PIK3CA,which encodes PI3K complex catalytic subunit p110a,is one of the most frequently mutated oncogenes in human cancers.1 So,targeting p110a hold...Phosphatidylinositol 3-kinases(PI3Ks)play key roles in tumorigenesis.PIK3CA,which encodes PI3K complex catalytic subunit p110a,is one of the most frequently mutated oncogenes in human cancers.1 So,targeting p110a holds great promise for cancer therapy.展开更多
基金financially supported by (i) Suranaree University of Technology,(ii) Thailand Science Research and Innovation,and (iii) National Science,Research and Innovation Fund(project codes 90464 and 160363)。
文摘The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide(NNMO)prepared by sol-gel and electrospinning methods is investigated in this paper.X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss,while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content.Compared with the sol-gel method,the secondary phase of NiO is more suppressed by using the electrospinning method,which is further confirmed by field emission scanning electron microscope images.N_(2) adsorption-desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents.The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are+2 and+4,respectively.For the electrochemical properties,superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%.The highest specific capacitance is 36.07 F·g^(-1)at0.1 A·g^(-1)in the NNMO electrode prepared by using the sol-gel method.By contrast,the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100%after charge-discharge measurements for 300 cycles.Therefore,controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.
基金support from the Key Project of Guangdong Province Nature Science Foundation (No. 2017B030311013)the Scientific and Technological Plan of Guangdong Province, Guangzhou and Qingyuan City, China (Nos. 2019B090905005, 2019B090911004, 2017B020227009, 2019DZX008, 2019A004)+2 种基金the financial support from the National Key R&D Program of China (2018YFB1502600)the National Natural Science Foundation of China (No. 51922042 and 51872098)the Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510700, China.
文摘Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode materials for PIBs are badly absent.Herein,we synthesize K-deficient layered manganese-based oxides(P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2))and investigate them as cathode of PIBs for the first time.As the newcomer of potassium-containing layered manganese-based oxides(K_(x)MnO_(2))group,P2-K_(0.21)MnO_(2) delivers high discharge capacity of 99.3 mAh g^(-1) and P3-K_(0.23)MnO_(2) exhibits remarkable capacity retention rate of 75.5%.Besides,in-situ XRD and ex-situ XRD measurements reveal the reversible phase transition of P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2) with the potassium-ions extraction and reinsertion,respectively.This work contributes to a better understanding for the potassium storage in K-deficient layered K_(x)MnO_(2)(x≤0.23),possessing an important basic scientific significance for the exploitation and application of layered K_(x)MnO_(2) in PIBs.
基金supported by National Natural Science Foundation of China (NSFC) under Grants No. 51407020National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grants No. 2014BAC13B05Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University) No. 2007DA10512716404
文摘In order to investigate whether an air–water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas(air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH(A;Σ;–X;Π;) and O(3p;P–3s;S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53–9.58 mg l;, depending on the gas/water mixture ratio. The production of OH(A;Σ;–X;Π;) rises with the increase of water content, whereas the O(3p;P–3s;S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air–water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH(A;Σ;–X;Π;) is a more effective species in inactivation than O(3p;P–3s;S) and the water content benefit the spore germination inhibition through rising the OH(A;Σ;–X;Π;) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l;.
文摘Head and neck squamous cell carcinoma is the sixth most common cancer in the world with approximately650000 new cases diagnosed annually.Next-generation molecular techniques and results from phase 2 of the Cancer Genome Atlas becoming available have drastically improved our current knowledge on the genetics basis of head and neck squamous cell carcinoma.New insights and new perspectives on the mutational landscape implicated in head and neck squamous cell carcinoma provide improved tools for prognostication.More importantly,depend on the patient's tumor subtypes and prognosis,deescalated or more aggressive therapy maybe chosen to achieve greater potency while minimizing the toxicity of therapy.This paper aims to review our current knowledge on the genetic mutations and altered molecular pathways in head and neck squamous cell carcinoma.Some of the most common mutations in head and neck squamous cell carcinoma reported by the cancer genome atlas including TP53,NOTCH1,Rb,CDKN2 A,Ras,PIK3 CA and EGFR are described here.Additionally,the emerging role of epigenetics and the role of human papilloma virus in head and neck squamous cell carcinoma are also discussed in this review.The molecular pathways,clinical applications,actionable molecular targets and potential therapeutic strategies are highlighted and discussed in details.
基金This work was supported by National Natural Science Foundation of China(No.82073044,and 81772503).
文摘Phosphatidylinositol 3-kinases(PI3Ks)play key roles in tumorigenesis.PIK3CA,which encodes PI3K complex catalytic subunit p110a,is one of the most frequently mutated oncogenes in human cancers.1 So,targeting p110a holds great promise for cancer therapy.