Proteomic assessment of low-abundance leaf proteins is hindered by the large quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) present within plant leaf tissues. In the present study, total prote...Proteomic assessment of low-abundance leaf proteins is hindered by the large quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) present within plant leaf tissues. In the present study, total proteins were extracted from wheat (Triticum aestivum L.) leaves by a conventional trichloroacetic acid (TCA)/acetone method and a protocol first developed in this work. Phytate/Ca2+ fractionation and TCA/acetone precipitation were combined to design an improved TCA/acetone method. The extracted proteins were analysed by two-dimensional gel electrophoresis (2-DE). The resulting 2-DE images were compared to reveal major differences. The results showed that large quantities of Rubisco were deleted from wheat leaf proteins prepared by the improved method. As many as (758±4) protein spots were detected from 2-DE images of protein extracts obtained by the improved method, 130 more than those detected by the TCA/acetone method. Further analysis indicated that more protein spots could be detected at regions of pI 4.00-4.99 and 6.50-7.00 in the improved method-based 2-DE images. Our findings indicated that the improved method is an efficient protein preparation protocol for separating low-abundance proteins in wheat leaf tissues by 2-DE analysis. The proposed protocol is simple, fast, inexpensive and also applicable to protein preparations of other plants.展开更多
AIM To investigate the role of calmodulin-dependent protein kinase Ⅱ(Ca MKⅡ) in colon cancer growth,migration and invasion.METHODS Ca MKⅡ expression in colon cancer and paracancerous tissues was evaluated via immun...AIM To investigate the role of calmodulin-dependent protein kinase Ⅱ(Ca MKⅡ) in colon cancer growth,migration and invasion.METHODS Ca MKⅡ expression in colon cancer and paracancerous tissues was evaluated via immunochemistry. Transcriptional and posttranscriptional levels of Ca MKⅡin tissue samples and MMP2,MMP9 and TIMP-1 expression in the human colon cancer cell line HCT116 were assessed by q RTPCR and western blot. Cell proliferation was detected with the MTT assay. Cancer cell migration and invasion were investigated with the Transwell culture system and woundhealing assay.RESULTS We first demonstrated that CaMK Ⅱ was ove rexpressed in human colon cancers and was associated with cancer differentiation. In the human colon cancer cell line HCT116,the Ca MKII-specific inhibitor KN93,but not its inactive analogue KN92,decreased cancer cell proliferation. Furthermore,KN93 also significantly prohibited HCT116 cell migration and invasion. The specific inhibition of ERK1/2 or p38 decreased the proliferation and migration of colon cancer cells.CONCLUSION Our findings highlight Ca MKⅡ as a potential critical mediator in human colon tumor development and metastasis.展开更多
Store-operated Ca2+ channels (SOCs) are plasma membrane Ca2+ permeable channels activated by depletion of intracellular Ca2+ store. Ca2+ entry through SOCs is known as store-operated Ca2+ entry (SOCE), which ...Store-operated Ca2+ channels (SOCs) are plasma membrane Ca2+ permeable channels activated by depletion of intracellular Ca2+ store. Ca2+ entry through SOCs is known as store-operated Ca2+ entry (SOCE), which plays an important role in the functional regulation of airway smooth muscle cells (ASMCs). Protein kinase C (PKC) has been shown to have an activating or inhibiting effect on SOCE, depending on cell types and PKC isoforms that are involved. In ASMCs, the effect of PKC on SOCE has not been elucidated so far. In this study, the role of PKC in the activation of SOCE in rat ASMCs was examined by using Ca2+ fluorescence imaging technique. The results showed that acute application of PKC activators PMA and PDBu did not affect SOCE induced by the sarcoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin. The non-selective PKC inhibitor chelerythrine significantly inhibited thapsigargin- and bradykinin-induced SOCE. RT-PCR assay identified PKCα, δ and ε isoforms in rat ASMCs. PKCα-selective inhibitor G6976 and PKCε-inhibiting peptide Epsilon-V1-2 had no effect on SOCE; by contrast, PKCδ-selective inhibitor rottlerin attenuated SOCE dramatically, suggesting that PKCδ was the major PKC isoform involved in the activation of SOCE in ASMCs. Moreover, PKC down-regulation by extended exposure to high doses of PMA or PDBu also reduced SOCE, confirming the essential role of PKC in the activation of SOCE in ASMCs. In addition, PKC down-regulation did not influence the expression of stromal interaction molecule 1 (STIM1) and Orai1, two elementary molecules in the regulation and activation of SOCs. These results identified PKCδ as an essential PKC isoform involved in the activation of SOCE, and confirmed that PKC regulates the function of ASMCs in a SOCE-dependent manner.展开更多
Hepatocyte nuclear factor 1 alpha(HNF1A),hepatocyte nuclear factor 4 alpha(HNF4A),and forkhead box protein A2(FOXA2)are key transcription factors that regulate a complex gene network in the liver,cre-ating a regulator...Hepatocyte nuclear factor 1 alpha(HNF1A),hepatocyte nuclear factor 4 alpha(HNF4A),and forkhead box protein A2(FOXA2)are key transcription factors that regulate a complex gene network in the liver,cre-ating a regulatory transcriptional loop.The Encode and ChIP-Atlas databases identify the recognition sites of these transcription factors in many glycosyltransferase genes.Our in silico analysis of HNF1A,HNF4A.and FOXA2 binding to the ten candidate glyco-genes studied in this work confirms a significant enrich-ment of these transcription factors specifically in the liver.Our previous studies identified HNF1A as a master regulator of fucosylation,glycan branching,and galactosylation of plasma glycoproteins.Here,we aimed to functionally validate the role of the three transcription factors on downstream glyco-gene transcriptional expression and the possible effect on glycan phenotype.We used the state-of-the-art clus-tered regularly interspaced short palindromic repeats/dead Cas9(CRISPR/dCas9)molecular tool for the downregulation of the HNF1A,HNF4A,and FOXA2 genes in HepG2 cells-a human liver cancer cell line.The results show that the downregulation of all three genes individually and in pairs affects the transcrip-tional activity of many glyco-genes,although downregulation of glyco-genes was not always followed by an unambiguous change in the corresponding glycan structures.The effect is better seen as an overall change in the total HepG2 N-glycome,primarily due to the extension of biantennary glycans.We propose an alternative way to evaluate the N-glycome composition via estimating the overall complexity of the glycome by quantifying the number of monomers in each glycan structure.We also propose a model showing feedback loops with the mutual activation of HNF1A-FOXA2 and HNF4A-FOXA2 affecting glyco-genes and protein glycosylation in HepG2 cells.展开更多
β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intr...β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intracellular Ca2+ concentration, mineralization of osteoblast and BSA protein structure were studied. Results showed that β-TCP could increase the intracelluar Ca2+ concentration and mineralization of osteoblast, indicating that β-TCP ceramics could take part in the organic metabolism and the degradation product had no detrimental effect on osteoblast in vitro. Furthermore, β-TCP ceramics could increase the content of α-helix and β-pleated sheet and change BSA into more ordering structure, those changes might be favorable for the biomineralization after β-TCP ceramics implanted.展开更多
Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultu...Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca2+ chelator were exposed to Y-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry. Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting. Results: In response to γ-irradiation, phosphorylation of ERK was not significantly observed, while the levels of phosphorylated c-Jun NH2-terminal kinase (JNK) and p38 MAPK were increased in 30 min and reached the peak 2 h after exposure to 6 Gy γ-irradiation, though the cell viability was significantly lowered 12 h. On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK. Chelation of intracellular Ca2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradia-tion, but removal of external Ca2+ had no such effect. Activation of p38 MAPK, but not of ERK, was seen to have a correlation with γ-irradiation induced apoptosis. Conclusion: The results suggest that γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells.展开更多
OBJECTIVE To determine the functional role of hydrogen sulfide(H_2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca^(2+)/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ) us...OBJECTIVE To determine the functional role of hydrogen sulfide(H_2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca^(2+)/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ) using wild type and CSE knockout mouse models.METHODS Continuous subcutaneous injection isoprenaline(7.5 mg·kg^(-1) per day),once a day for 4 weeks to induce heart failure in male C57BL/6(6-8 weeks old) mice and CSE-/-mice.150 μmol·L^(-1) H_2O_2 was used to induce oxidative stress in H9c2 cells.Echocardiograph was used to detect cardiac parameters.H&E stain and Masson stain was to observation histopathological changes.Western blot was used to detect protein expression and activity.The si RNA was used to silence protein expression.HPLC was used to detect H_2S level.Biotin assay was used to detect the level of S-sulfhydration protein.RESULTS Treatment with S-propyl-L-cysteine(SPRC) or sodium hydrosulfide(Na HS),modulators of blood H_2S levels,attenuated the development of heart failure in animals,reduced lipid peroxidation,and preserved mitochondrial function.The inhibition Ca MKⅡ phosphorylation by SPRC and Na HS as demonstrated using both in vivo and in vitro models corresponded with the cardioprotective effects of these compounds.Interestingly,Ca MKⅡ activity was found to be elevated in CSE-/-mice as compared to wild type animals and the phosphorylation status of Ca MK Ⅱ appeared to relate to the severity of heart failure.Importantly,in wild type mice SPRC was found to promote S-sulfhydration of Ca MKⅡ leading to reduced activity of this protein however,in CSE-/-mice S-sulfhydration was abolished following SPRC treatment.CONCLUSION A novel mechanism depicting a role of S-sulfhydration in the regulation of Ca MKⅡ is presented.SPRC mediated S-sulfhydration of Ca MKⅡ was found to inhibit Ca MKⅡ activity and to preserve cardiovascular homeostasis.展开更多
基金supported by the National Natural Science Foundation of China (30871578)the Key Project of National Plant Transgenic Genes of China(2008ZX08002004,2011ZX08002004)
文摘Proteomic assessment of low-abundance leaf proteins is hindered by the large quantity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) present within plant leaf tissues. In the present study, total proteins were extracted from wheat (Triticum aestivum L.) leaves by a conventional trichloroacetic acid (TCA)/acetone method and a protocol first developed in this work. Phytate/Ca2+ fractionation and TCA/acetone precipitation were combined to design an improved TCA/acetone method. The extracted proteins were analysed by two-dimensional gel electrophoresis (2-DE). The resulting 2-DE images were compared to reveal major differences. The results showed that large quantities of Rubisco were deleted from wheat leaf proteins prepared by the improved method. As many as (758±4) protein spots were detected from 2-DE images of protein extracts obtained by the improved method, 130 more than those detected by the TCA/acetone method. Further analysis indicated that more protein spots could be detected at regions of pI 4.00-4.99 and 6.50-7.00 in the improved method-based 2-DE images. Our findings indicated that the improved method is an efficient protein preparation protocol for separating low-abundance proteins in wheat leaf tissues by 2-DE analysis. The proposed protocol is simple, fast, inexpensive and also applicable to protein preparations of other plants.
基金Supported by the National Natural Science Foundation of China,No.81302131
文摘AIM To investigate the role of calmodulin-dependent protein kinase Ⅱ(Ca MKⅡ) in colon cancer growth,migration and invasion.METHODS Ca MKⅡ expression in colon cancer and paracancerous tissues was evaluated via immunochemistry. Transcriptional and posttranscriptional levels of Ca MKⅡin tissue samples and MMP2,MMP9 and TIMP-1 expression in the human colon cancer cell line HCT116 were assessed by q RTPCR and western blot. Cell proliferation was detected with the MTT assay. Cancer cell migration and invasion were investigated with the Transwell culture system and woundhealing assay.RESULTS We first demonstrated that CaMK Ⅱ was ove rexpressed in human colon cancers and was associated with cancer differentiation. In the human colon cancer cell line HCT116,the Ca MKII-specific inhibitor KN93,but not its inactive analogue KN92,decreased cancer cell proliferation. Furthermore,KN93 also significantly prohibited HCT116 cell migration and invasion. The specific inhibition of ERK1/2 or p38 decreased the proliferation and migration of colon cancer cells.CONCLUSION Our findings highlight Ca MKⅡ as a potential critical mediator in human colon tumor development and metastasis.
基金supported by grants from the National Natural Science Foundation of China(No.30871122,No.81072684)
文摘Store-operated Ca2+ channels (SOCs) are plasma membrane Ca2+ permeable channels activated by depletion of intracellular Ca2+ store. Ca2+ entry through SOCs is known as store-operated Ca2+ entry (SOCE), which plays an important role in the functional regulation of airway smooth muscle cells (ASMCs). Protein kinase C (PKC) has been shown to have an activating or inhibiting effect on SOCE, depending on cell types and PKC isoforms that are involved. In ASMCs, the effect of PKC on SOCE has not been elucidated so far. In this study, the role of PKC in the activation of SOCE in rat ASMCs was examined by using Ca2+ fluorescence imaging technique. The results showed that acute application of PKC activators PMA and PDBu did not affect SOCE induced by the sarcoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin. The non-selective PKC inhibitor chelerythrine significantly inhibited thapsigargin- and bradykinin-induced SOCE. RT-PCR assay identified PKCα, δ and ε isoforms in rat ASMCs. PKCα-selective inhibitor G6976 and PKCε-inhibiting peptide Epsilon-V1-2 had no effect on SOCE; by contrast, PKCδ-selective inhibitor rottlerin attenuated SOCE dramatically, suggesting that PKCδ was the major PKC isoform involved in the activation of SOCE in ASMCs. Moreover, PKC down-regulation by extended exposure to high doses of PMA or PDBu also reduced SOCE, confirming the essential role of PKC in the activation of SOCE in ASMCs. In addition, PKC down-regulation did not influence the expression of stromal interaction molecule 1 (STIM1) and Orai1, two elementary molecules in the regulation and activation of SOCs. These results identified PKCδ as an essential PKC isoform involved in the activation of SOCE, and confirmed that PKC regulates the function of ASMCs in a SOCE-dependent manner.
基金the European Structural and Investment Funded Grant"Cardio Metabolic"(#KK.01.2.1.02.0321)the Croatian National Centre of Research Excellence in Personalized Healthcare Grant(#KK.01.1.1.01.0010)+2 种基金the European Regional Development Fund Grant,project"CRISPR/Cas9-CasMouse"(#KK.01.1.1.04.0085)the European Structural and Investment Funded Project of Centre of Competence in Molecular Diagnostics(#KK.01.2.2.03.0006)the Croatian National Centre of Research Excellence in Personalized Healthcare Grant(#KK.01.1.1.01.0010).
文摘Hepatocyte nuclear factor 1 alpha(HNF1A),hepatocyte nuclear factor 4 alpha(HNF4A),and forkhead box protein A2(FOXA2)are key transcription factors that regulate a complex gene network in the liver,cre-ating a regulatory transcriptional loop.The Encode and ChIP-Atlas databases identify the recognition sites of these transcription factors in many glycosyltransferase genes.Our in silico analysis of HNF1A,HNF4A.and FOXA2 binding to the ten candidate glyco-genes studied in this work confirms a significant enrich-ment of these transcription factors specifically in the liver.Our previous studies identified HNF1A as a master regulator of fucosylation,glycan branching,and galactosylation of plasma glycoproteins.Here,we aimed to functionally validate the role of the three transcription factors on downstream glyco-gene transcriptional expression and the possible effect on glycan phenotype.We used the state-of-the-art clus-tered regularly interspaced short palindromic repeats/dead Cas9(CRISPR/dCas9)molecular tool for the downregulation of the HNF1A,HNF4A,and FOXA2 genes in HepG2 cells-a human liver cancer cell line.The results show that the downregulation of all three genes individually and in pairs affects the transcrip-tional activity of many glyco-genes,although downregulation of glyco-genes was not always followed by an unambiguous change in the corresponding glycan structures.The effect is better seen as an overall change in the total HepG2 N-glycome,primarily due to the extension of biantennary glycans.We propose an alternative way to evaluate the N-glycome composition via estimating the overall complexity of the glycome by quantifying the number of monomers in each glycan structure.We also propose a model showing feedback loops with the mutual activation of HNF1A-FOXA2 and HNF4A-FOXA2 affecting glyco-genes and protein glycosylation in HepG2 cells.
基金Funded by the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201037)the Foundation for Talent Recruitment of Yancheng Institute of Technology (XKR2011007)"973" Chinese National Key Fundamental Research and Development Program (No.G1999064701)
文摘β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intracellular Ca2+ concentration, mineralization of osteoblast and BSA protein structure were studied. Results showed that β-TCP could increase the intracelluar Ca2+ concentration and mineralization of osteoblast, indicating that β-TCP ceramics could take part in the organic metabolism and the degradation product had no detrimental effect on osteoblast in vitro. Furthermore, β-TCP ceramics could increase the content of α-helix and β-pleated sheet and change BSA into more ordering structure, those changes might be favorable for the biomineralization after β-TCP ceramics implanted.
基金in part by Natural Sciences Foundation of China (No. 39870239)by the Sasagawa Fellowship,Japan.
文摘Objective: To explore the effects of γ-irradiation on mitogen-activated protein kinases (MAPKs) and role of intracellular calcium in this event in intestinal epithelial cell line 6 (IEC-6 cells). Methods: After cultured rat IIEC-6 cells with or without the pretreatment of intracellular Ca2+ chelator were exposed to Y-ir-radiation of 6 Gy, the total and phosphorylated MAPKs in the cells were determined with Western blotting and apoptosis was examined with flow cytometry. Activities of Extracellular signal-regulated protein kinase (ERK) and p38 MAPK were determined by using immuoprecipitation followed by Western blotting. Results: In response to γ-irradiation, phosphorylation of ERK was not significantly observed, while the levels of phosphorylated c-Jun NH2-terminal kinase (JNK) and p38 MAPK were increased in 30 min and reached the peak 2 h after exposure to 6 Gy γ-irradiation, though the cell viability was significantly lowered 12 h. On the other hand, no obvious changes were seen in the total protein levels of ERK, JNK and p38 MAPK. Chelation of intracellular Ca2+ almost completely suppressed the JNK and p38 MAPK phosphorylation induced by γ-irradia-tion, but removal of external Ca2+ had no such effect. Activation of p38 MAPK, but not of ERK, was seen to have a correlation with γ-irradiation induced apoptosis. Conclusion: The results suggest that γ-irradiation is a potent activator for JNK and p38 MAPK, and Ca2+ mobilized from intracellular stores plays an important role in the activation of MAPKs and the induction of apoptosis in IEC-6 cells.
文摘OBJECTIVE To determine the functional role of hydrogen sulfide(H_2S) in protecting against mitochondrial dysfunction in heart failure through the inhibition of Ca^(2+)/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ) using wild type and CSE knockout mouse models.METHODS Continuous subcutaneous injection isoprenaline(7.5 mg·kg^(-1) per day),once a day for 4 weeks to induce heart failure in male C57BL/6(6-8 weeks old) mice and CSE-/-mice.150 μmol·L^(-1) H_2O_2 was used to induce oxidative stress in H9c2 cells.Echocardiograph was used to detect cardiac parameters.H&E stain and Masson stain was to observation histopathological changes.Western blot was used to detect protein expression and activity.The si RNA was used to silence protein expression.HPLC was used to detect H_2S level.Biotin assay was used to detect the level of S-sulfhydration protein.RESULTS Treatment with S-propyl-L-cysteine(SPRC) or sodium hydrosulfide(Na HS),modulators of blood H_2S levels,attenuated the development of heart failure in animals,reduced lipid peroxidation,and preserved mitochondrial function.The inhibition Ca MKⅡ phosphorylation by SPRC and Na HS as demonstrated using both in vivo and in vitro models corresponded with the cardioprotective effects of these compounds.Interestingly,Ca MKⅡ activity was found to be elevated in CSE-/-mice as compared to wild type animals and the phosphorylation status of Ca MK Ⅱ appeared to relate to the severity of heart failure.Importantly,in wild type mice SPRC was found to promote S-sulfhydration of Ca MKⅡ leading to reduced activity of this protein however,in CSE-/-mice S-sulfhydration was abolished following SPRC treatment.CONCLUSION A novel mechanism depicting a role of S-sulfhydration in the regulation of Ca MKⅡ is presented.SPRC mediated S-sulfhydration of Ca MKⅡ was found to inhibit Ca MKⅡ activity and to preserve cardiovascular homeostasis.