The luminescent properties of Eu^3+doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation ba...The luminescent properties of Eu^3+doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation band below 325 nm and strong narrow peaks above 325 nm. The main peak of the excitation band was located at 400 nm. The peaks located at 290 nm were assigned to the combination of the charge transfer transition of O-Eu, peaks above 325 nm (325, 385, 400, 470, 511, and 539 nm) were assigned to the f-f transitions of Eu^3+. The emission spectrum was dominated by the red peak located at 612 nm due to the electric dipole transition of ^5D0-^7F2. In addition, the effects of the Eu^3+ content and charge compensators of Li^+, Na^+, K^+, and Cl^- ions on the emission intensity were investigated. The experiment results suggested that the strongest emission was obtained when the concentration of the Eu^3+ ions was 0.3 mol^-1, and Li^+ ions gave the best improvement to enhance the emission intensity. Ca2SiO4:Eu^3+, Li^+ was thus suitable for low-cost trichromatic white light emitting diodes (WLED) based on UV InGaN chip.展开更多
Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar, stucco, and non-speciality grout. Dicalcium silicate (Ca2SiO4) is the primary constituent ...Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar, stucco, and non-speciality grout. Dicalcium silicate (Ca2SiO4) is the primary constituent of a number of different types of cement. The β-Ca2SiO4 phase is metastable at room temperature and will transform into β-Ca2SiO4 at 663K. In this work, Portland cement is annealed at a temperature of 950K under pressures in the range of 0-5.5 CPa. The high pressure experiments are carried out in an apparatus with six anvil tops. The effect of high pressure on the obtaining nano-size β-Ca2SiO4 (C2S) process is investigated by x-ray diffraction and transmission electron microscopy. Experimental results show that the grain size of the C2S decreases with the increase of pressure. The volume fraction of the C2S phase increases with the pressure as the pressure is below 3 CPa, and then decreases (P 〉 3 GPa). The nano-effect is very important to the stabilization of β-Ca2SiO4. The mechanism for the effects of the high pressure on the annealing process of the Portland cement is also discussed.展开更多
基金supported by the National Natural Science Foundation of China(50872091)Key Discipline of Materials Physics and Chemistry(Tianjin,China)(10SYSYJC28100)~~
基金National Natural Science Foundation of China(51872185)The Science and Technology Commission of Shanghai Municipality(17060502400)+3 种基金The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(LK1616)Academic Leaders Training Program of Pudong Health Bureau of Shanghai(PWRd2017-03)Science and Technology Development Fund of Shanghai Pudong New Area(PKJ2015-Y37)"Pu Jing" Training Program of Shanghai Pudong hospital(PJ201503)
基金supported by Jiangxi Provincial Department of Education (GJJ08344)
文摘The luminescent properties of Eu^3+doped Ca2SiO4 red phosphors synthesized by the flux fusion reaction method were investigated. It was found that the excitation spectrum included two regions: the weak excitation band below 325 nm and strong narrow peaks above 325 nm. The main peak of the excitation band was located at 400 nm. The peaks located at 290 nm were assigned to the combination of the charge transfer transition of O-Eu, peaks above 325 nm (325, 385, 400, 470, 511, and 539 nm) were assigned to the f-f transitions of Eu^3+. The emission spectrum was dominated by the red peak located at 612 nm due to the electric dipole transition of ^5D0-^7F2. In addition, the effects of the Eu^3+ content and charge compensators of Li^+, Na^+, K^+, and Cl^- ions on the emission intensity were investigated. The experiment results suggested that the strongest emission was obtained when the concentration of the Eu^3+ ions was 0.3 mol^-1, and Li^+ ions gave the best improvement to enhance the emission intensity. Ca2SiO4:Eu^3+, Li^+ was thus suitable for low-cost trichromatic white light emitting diodes (WLED) based on UV InGaN chip.
基金Supported by the National Natural Science Foundation of China under Grant No 11674274
文摘Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar, stucco, and non-speciality grout. Dicalcium silicate (Ca2SiO4) is the primary constituent of a number of different types of cement. The β-Ca2SiO4 phase is metastable at room temperature and will transform into β-Ca2SiO4 at 663K. In this work, Portland cement is annealed at a temperature of 950K under pressures in the range of 0-5.5 CPa. The high pressure experiments are carried out in an apparatus with six anvil tops. The effect of high pressure on the obtaining nano-size β-Ca2SiO4 (C2S) process is investigated by x-ray diffraction and transmission electron microscopy. Experimental results show that the grain size of the C2S decreases with the increase of pressure. The volume fraction of the C2S phase increases with the pressure as the pressure is below 3 CPa, and then decreases (P 〉 3 GPa). The nano-effect is very important to the stabilization of β-Ca2SiO4. The mechanism for the effects of the high pressure on the annealing process of the Portland cement is also discussed.