目的:研究Ca2+离子对非CaBPs蛋白类过敏原二级结构和抗原活性的影响。方法:以重组榛子主要过敏原Cor h 1为研究对象,用圆二色谱(CD)研究了系列浓度的Ca2+和EDTA各自存在情况下,不同蛋白浓度溶液中rCor h 1二级结构的变化及规律,并以榛...目的:研究Ca2+离子对非CaBPs蛋白类过敏原二级结构和抗原活性的影响。方法:以重组榛子主要过敏原Cor h 1为研究对象,用圆二色谱(CD)研究了系列浓度的Ca2+和EDTA各自存在情况下,不同蛋白浓度溶液中rCor h 1二级结构的变化及规律,并以榛子过敏患者血清为一抗,用ELISA实验分析了Ca2+和EDTA对rCor h 1抗原活性的影响。结果:在高浓度rCor h 1溶液中Ca2+的加入可以引起椭圆率的增加,而在低浓度的rCor h 1溶液中则引起椭圆率的降低;EDTA在高浓度和低浓度的rCor h 1溶液中均能引起rCor h 1二级结构相对含量的降低;椭圆率增加(或降低)的幅度与Ca2+、EDTA终浓度成正比。ELISA实验表明Ca2+和EDTA都能显著降低rCor h 1的抗原活性。结论:Ca2+离子可以显著影响rCor h 1的二级结构,降低其抗原活性,为非CaBPs蛋白类低致敏原的研究奠定了较好的前期研究基础。展开更多
As a result of accumulating methylglyoxal and advanced glycation end products in the brains of patients with Alzheimer’s disease,it is considered a protein precipitation disease.The ubiquitin proteasome system is one...As a result of accumulating methylglyoxal and advanced glycation end products in the brains of patients with Alzheimer’s disease,it is considered a protein precipitation disease.The ubiquitin proteasome system is one of the most important mechanisms for cells to degrade proteins,and thus is very important for maintaining normal physiological function of the nervous system.This study recruited 48 individuals with Alzheimer’s disease(20 males and 28 females aged 75±6 years)and 50 healthy volunteers(21 males and 29 females aged 72±7 years)from the Affiliated Hospital of Youjiang Medical University for Nationalities(Baise,China)between 2014 and 2017.Plasma levels of malondialdehyde and H2O2 were measured by colorimetry,while glyoxalase 1 activity was detected by spectrophotometry.In addition,20S proteasome activity in erythrocytes was measured with a fluorescent substrate method.Ubiquitin and glyoxalase 1 protein expression in erythrocyte membranes was detected by western blot assay.The results demonstrated that compared with the control group,patients with Alzheimer’s disease exhibited increased plasma malondialdehyde and H2O2 levels,and decreased glyoxalase 1 activity;however,expression level of glyoxalase 1 protein remained unchanged.Moreover,activity of the 20S proteasome was decreased and expression of ubiquitin protein was increased in erythrocytes.These findings indicate that proteasomal and glyoxalase activities may be involved in the occurrence of Alzheimer’s disease,and erythrocytes may be a suitable tissue for Alzheimer’s disease studies.This study was approved by the Ethics Committee of Youjiang Medical University for Nationalities(approval No.YJ12017013)on May 3,2017.展开更多
CaC12 can be sprayed onto sinter surface, which can improve the low temperature reduction degradation index (RDI+3.15) of sinter. This has been recognized; however, there are various opinions on the inhibition mech...CaC12 can be sprayed onto sinter surface, which can improve the low temperature reduction degradation index (RDI+3.15) of sinter. This has been recognized; however, there are various opinions on the inhibition mechanism of it. At the same time, the corrosion of C1 element on equipment is very serious. First-principle calculations based on density functional theory were performed to investigate the binding mechanisms of calcium species on a a-Fe2 03 (0 0 1) surface. This is crucial in demonstrating the role of the CaC12 on improving the low temperature reduction degrada tion index. It has been determined that C1 could greatly increase the adsorption of the vacuum layer for the Ca/Fe2 03 system and the relaxation produced by adsorption made bond length decrease, bond energies increase and structure compact. Those are the main reasons that inhibiting the reduction disintegration of sinter.展开更多
Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Mul- tiple Ca2+/H+ transporters and channels have been described and studied in the plasma membrane and orga...Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Mul- tiple Ca2+/H+ transporters and channels have been described and studied in the plasma membrane and organ- elle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca2+/H+ antiporters have remained unknown. Here we report the identification and characterization of a member of the UPFO016 family, CCHA1 (a chloroplast-localized potential Ca2+/H+ antiporter), in Arabidopsis thaliana. We observed that the ccha I mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha I mutants compared with the wild type. In high Ca2+ concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdtl3 null mutant, which is defective in a Ca2+/H+ antiporter. The cchal mutant plants also showed significant sensitivity to high concentrations of CaCI2 and MnCI2, as well as variation in pH. Taken these results together, we propose that CCHA 1 might encode a putative chloroplast-localized Ca2+/H+ antiporter with critical functions in the regulation of PSII and in chloroplast Ca2+ and pH homeostasis in Arabidopsis.展开更多
文摘目的:研究Ca2+离子对非CaBPs蛋白类过敏原二级结构和抗原活性的影响。方法:以重组榛子主要过敏原Cor h 1为研究对象,用圆二色谱(CD)研究了系列浓度的Ca2+和EDTA各自存在情况下,不同蛋白浓度溶液中rCor h 1二级结构的变化及规律,并以榛子过敏患者血清为一抗,用ELISA实验分析了Ca2+和EDTA对rCor h 1抗原活性的影响。结果:在高浓度rCor h 1溶液中Ca2+的加入可以引起椭圆率的增加,而在低浓度的rCor h 1溶液中则引起椭圆率的降低;EDTA在高浓度和低浓度的rCor h 1溶液中均能引起rCor h 1二级结构相对含量的降低;椭圆率增加(或降低)的幅度与Ca2+、EDTA终浓度成正比。ELISA实验表明Ca2+和EDTA都能显著降低rCor h 1的抗原活性。结论:Ca2+离子可以显著影响rCor h 1的二级结构,降低其抗原活性,为非CaBPs蛋白类低致敏原的研究奠定了较好的前期研究基础。
基金supported by the National Natural Science Foundation of China,No.81860244the Natural Science Foundation of Guangxi Zhuang Autonomous Region of China,No.2018JJA140311 and 2018GXNSFAA281051the Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi Zhuang Autonomous Region of China,No.2017KY0516(all to CDJ)
文摘As a result of accumulating methylglyoxal and advanced glycation end products in the brains of patients with Alzheimer’s disease,it is considered a protein precipitation disease.The ubiquitin proteasome system is one of the most important mechanisms for cells to degrade proteins,and thus is very important for maintaining normal physiological function of the nervous system.This study recruited 48 individuals with Alzheimer’s disease(20 males and 28 females aged 75±6 years)and 50 healthy volunteers(21 males and 29 females aged 72±7 years)from the Affiliated Hospital of Youjiang Medical University for Nationalities(Baise,China)between 2014 and 2017.Plasma levels of malondialdehyde and H2O2 were measured by colorimetry,while glyoxalase 1 activity was detected by spectrophotometry.In addition,20S proteasome activity in erythrocytes was measured with a fluorescent substrate method.Ubiquitin and glyoxalase 1 protein expression in erythrocyte membranes was detected by western blot assay.The results demonstrated that compared with the control group,patients with Alzheimer’s disease exhibited increased plasma malondialdehyde and H2O2 levels,and decreased glyoxalase 1 activity;however,expression level of glyoxalase 1 protein remained unchanged.Moreover,activity of the 20S proteasome was decreased and expression of ubiquitin protein was increased in erythrocytes.These findings indicate that proteasomal and glyoxalase activities may be involved in the occurrence of Alzheimer’s disease,and erythrocytes may be a suitable tissue for Alzheimer’s disease studies.This study was approved by the Ethics Committee of Youjiang Medical University for Nationalities(approval No.YJ12017013)on May 3,2017.
基金Item Sponsored by National Natural Science Foundation of China(51174074)Open Fund Project of National Key Laboratory in University of Science and Technology Beijing of China(KF13-02)
文摘CaC12 can be sprayed onto sinter surface, which can improve the low temperature reduction degradation index (RDI+3.15) of sinter. This has been recognized; however, there are various opinions on the inhibition mechanism of it. At the same time, the corrosion of C1 element on equipment is very serious. First-principle calculations based on density functional theory were performed to investigate the binding mechanisms of calcium species on a a-Fe2 03 (0 0 1) surface. This is crucial in demonstrating the role of the CaC12 on improving the low temperature reduction degrada tion index. It has been determined that C1 could greatly increase the adsorption of the vacuum layer for the Ca/Fe2 03 system and the relaxation produced by adsorption made bond length decrease, bond energies increase and structure compact. Those are the main reasons that inhibiting the reduction disintegration of sinter.
文摘Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Mul- tiple Ca2+/H+ transporters and channels have been described and studied in the plasma membrane and organ- elle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca2+/H+ antiporters have remained unknown. Here we report the identification and characterization of a member of the UPFO016 family, CCHA1 (a chloroplast-localized potential Ca2+/H+ antiporter), in Arabidopsis thaliana. We observed that the ccha I mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha I mutants compared with the wild type. In high Ca2+ concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdtl3 null mutant, which is defective in a Ca2+/H+ antiporter. The cchal mutant plants also showed significant sensitivity to high concentrations of CaCI2 and MnCI2, as well as variation in pH. Taken these results together, we propose that CCHA 1 might encode a putative chloroplast-localized Ca2+/H+ antiporter with critical functions in the regulation of PSII and in chloroplast Ca2+ and pH homeostasis in Arabidopsis.