期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
考虑数据排序的改进CABOSFV聚类 被引量:2
1
作者 武森 王静 谭一松 《计算机工程与应用》 CSCD 北大核心 2011年第34期127-129,共3页
CABOSFV是基于稀疏特征进行高维数据聚类的高效算法,但算法的聚类质量受数据输入顺序的影响。针对此问题,提出考虑数据排序的改进CABOSFV聚类(CABOSFV_CS),通过定义稀疏性指数来描述数据的稀疏特征,并按照稀疏性指数升序对数据进行排序... CABOSFV是基于稀疏特征进行高维数据聚类的高效算法,但算法的聚类质量受数据输入顺序的影响。针对此问题,提出考虑数据排序的改进CABOSFV聚类(CABOSFV_CS),通过定义稀疏性指数来描述数据的稀疏特征,并按照稀疏性指数升序对数据进行排序以改进CABOSFV算法的聚类质量。采用UCI基准数据集进行实验,结果表明与传统的CABOSFV算法相比,CABOSFV_CS有效地提高了聚类准确率。 展开更多
关键词 cabosfv算法 高维数据 稀疏特征 聚类
下载PDF
基于减法聚类和K均值聚类的彩色图像分割算法
2
作者 汪彦 何建新 《湖南城市学院学报(自然科学版)》 CAS 2014年第4期68-71,共4页
传统图像分割方法大都存在分割速度低下、过度分割等缺点.针对上述问题,提出一种新的彩色图像区域分割算法.这种方法首先将图像转化至L*a*b*空间,并划分为子块,抽取图像子块的颜色、纹理和位置特征组成子块的特征向量,然后运用减法聚类... 传统图像分割方法大都存在分割速度低下、过度分割等缺点.针对上述问题,提出一种新的彩色图像区域分割算法.这种方法首先将图像转化至L*a*b*空间,并划分为子块,抽取图像子块的颜色、纹理和位置特征组成子块的特征向量,然后运用减法聚类,获得聚类簇数和初始蔟中心,最后利用改进的K均值算法在像素点特征空间进行聚类,进而分割图像成区域.实验结果表明这种新方法具有分割效率高、分割效果理想等优点. 展开更多
关键词 特征向量 图像区域分割 减法聚类 K均值算法
下载PDF
自适应数据库中基于特征向量的聚类算法的研究与改进
3
作者 高燕飞 陈俊杰 强彦 《电脑开发与应用》 2008年第7期57-58,61,共3页
在负载自适应数据库系统中,负载特征化部件是关键部分,首先要对负载分类,然后根据分类的情况预测负载性能。负载的分类一般采用聚类算法,聚类算法中比较典型的就是K-means算法。但在K-means算法中,k值必须提前设定而且不能根据负载的实... 在负载自适应数据库系统中,负载特征化部件是关键部分,首先要对负载分类,然后根据分类的情况预测负载性能。负载的分类一般采用聚类算法,聚类算法中比较典型的就是K-means算法。但在K-means算法中,k值必须提前设定而且不能根据负载的实际情况改变,就是对算法的一个改进,使得k值动态的、能够根据负载的实际情况改变。实验结果表明,使用该算法的分类结果预测负载运行时间的准确性有明显提高。 展开更多
关键词 特征向量 聚类算法 K—means算法 基于特征向量的聚类算法
下载PDF
I-Miner环境下聚类分析算法研究与实现
4
作者 徐德 谭维 +2 位作者 杨燕 侯天子 黄乐 《现代计算机》 2009年第2期30-34,共5页
聚类分析是一种非监督型知识发现的方法,能有效地处理大量的、繁杂的、属性众多的且没有类标志的数据。DBSCAN算法能实现任意形状的数据集的聚类,模糊C均值适合于那些在簇中心周围呈均匀分布的数据集,CABOSFV算法对于高维稀疏数据集(例... 聚类分析是一种非监督型知识发现的方法,能有效地处理大量的、繁杂的、属性众多的且没有类标志的数据。DBSCAN算法能实现任意形状的数据集的聚类,模糊C均值适合于那些在簇中心周围呈均匀分布的数据集,CABOSFV算法对于高维稀疏数据集(例如Web数据)能很好地聚类。在I-Miner中嵌入DBSCAN、CABOSFV和模糊C均值三种聚类分析算法,能够较好地满足用户的需要,建立数据挖掘模型,支持生产决策。 展开更多
关键词 聚类分析 DBSCAN算法 模糊C均值 cabosfv算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部