This paper focuses on how to optimize the cache performance of sparse matrix-matrix multiplication(SpGEMM).It classifies the cache misses into two categories;one is caused by the irregular distribution pattern of the ...This paper focuses on how to optimize the cache performance of sparse matrix-matrix multiplication(SpGEMM).It classifies the cache misses into two categories;one is caused by the irregular distribution pattern of the multiplier-matrix,and the other is caused by the multiplicand.For each of them,the paper puts forward an optimization method respectively.The first hash based method removes cache misses of the 1 st category effectively,and improves the performance by a factor of 6 on an Intel 8-core CPU for the best cases.For cache misses of the 2nd category,it proposes a new cache replacement algorithm,which achieves a cache hit rate much higher than other historical knowledge based algorithms,and the algorithm is applicable on CELL and GPU.To further verify the effectiveness of our methods,we implement our algorithm on GPU,and the performance perfectly scales with the size of on-chip storage.展开更多
基金Supported by the National High Technology Research and Development Programme of China(No.2010AA012302,2009AA01 A134)Tsinghua National Laboratory for Information Science and Technology(TNList)Cross-discipline Foundation
文摘This paper focuses on how to optimize the cache performance of sparse matrix-matrix multiplication(SpGEMM).It classifies the cache misses into two categories;one is caused by the irregular distribution pattern of the multiplier-matrix,and the other is caused by the multiplicand.For each of them,the paper puts forward an optimization method respectively.The first hash based method removes cache misses of the 1 st category effectively,and improves the performance by a factor of 6 on an Intel 8-core CPU for the best cases.For cache misses of the 2nd category,it proposes a new cache replacement algorithm,which achieves a cache hit rate much higher than other historical knowledge based algorithms,and the algorithm is applicable on CELL and GPU.To further verify the effectiveness of our methods,we implement our algorithm on GPU,and the performance perfectly scales with the size of on-chip storage.