AIM: To determine the method of growing small intestinal epithelial cells in short-term primary culture and to investigate the effect of extracellular iron concentration ([Fe3+]) on calcium absorption and the relation...AIM: To determine the method of growing small intestinal epithelial cells in short-term primary culture and to investigate the effect of extracellular iron concentration ([Fe3+]) on calcium absorption and the relationship between the rising intracellular calcium concentration ([Ca2+]i) and cell apoptosis in human intestinal epithelial Caco-2 cells. METHODS: Primary culture was used for growing small intestinal epithelial cells. [Ca2+]i was detected by a confocal laser scanning microscope. The changes in [Ca2+]i were represented by fluorescence intensity (FI). The apoptosis was evaluated by flow cytometry. RESULTS: Isolation of epithelial cells and preservation of its three-dimensional integrity were achieved using the digestion technique of a mixture of collagenase Ⅺ and dispase Ⅰ. Purification of the epithelial cells was facilitated by using a simple differential sedimentation method. The results showed that proliferation of normal gut epithelium in vitro was initially dependent upon the maintenance of structural integrity of the tissue. If 0.25% trypsin was used for digestion, the cells were severely damaged and very difficult to stick to the Petri dish for growing. The Fe3+ chelating agent desferrioxamine (100, 200 and 300 μmol/L) increased the FI of Caco-2 cells from 27.50±13.18 (control, n = 150) to 35.71±13.99 (n = 150, P<0.01), 72.19±35.40 (n = 150, P<0.01) and 211.34±29.03 (n = 150,P<0.01) in a concentration-dependent manner. There was a significant decrease in the FI of Caco-2 cells treated by ferric ammonium citrate (FAC, a Fe3+ donor; 10, 50 and 100 μmol/L). The FI value of Caco-2 cells treated by FAC was 185.85±33.77 (n = 150, P<0.01), 122.73±58.47 (n = 150, P<0.01), and 53.29±19.82 (n= 150,P<0.01), respectively, suggesting that calcium absorption was influenced by [Fe3+]. Calcium ionophore A23187(0.1,1.0 and 10 μmol/L) increased the FI of Caco-2 cells from 40.45±13.95 (control, n = 150) to 45.19±21.95 (n = 150, P<0.01), 89.87±43.29 (n = 150, P<0.01) and 104.64±51.07 (n = 150,P<0.01) in a concentration-dependent manner. The positive apoptotic cell number of the Caco-2 cells after being treated with A23187 increased from 0.32% to 0.69%, 0.90% and 1.10%, indicating that the increase in the positive apoptotic cell number was positively correlated with [Ca2+]i. CONCLUSION: Ca2+ absorbability is increased with the decrease of extracellular iron concentration Fe3+ and hindered with the increase of Fe3+ consistence out of them. Furthermore, increase of [Ca2+]i can induce apoptosis in Caco-2 cells.展开更多
AIM: To understand the digestive stability and mechanism of release and intestinal uptake of pea ferritin iron in caco-2 cell line model.METHODS: Pea seed ferritin was purified using salt fractionation followed by g...AIM: To understand the digestive stability and mechanism of release and intestinal uptake of pea ferritin iron in caco-2 cell line model.METHODS: Pea seed ferritin was purified using salt fractionation followed by gel filtration chromatography.The bioavailability of ferritin iron was assessed using coupled in vitro digestion/Caco-2 cell model in the presence or absence of ascorbic acid and phytic acid.Caco-2 cell ferritin formation was used as a surrogate marker of iron uptake. Structural changes of pea ferritin under simulated gastric pH were characterized using electrophoresis, gel filtration and circular dichroism spectroscopy.RESULTS: The caco-2 cell ferritin formation was significantly increased (P 〈 0.001) with FeSO4 (19.3±9.8 ng/mg protein) and pea ferritin (13.9 ± 6.19 ng/mg protein) compared to the blank digest (3.7 ± 1.8 ng/mg protein). Ascorbic acid enhanced while phytic acid decreased the pea ferritin iron bioavailability. However,either in the presence or absence of ascorbic acid, the ferritin content of caco-2 cells was significantly less with pea ferritin than with FeSO4. At gastric pH, no band corresponding to ferritin was observed in the presence of pepsin either on native PAGE or SDS-PAGE. Gel filtration chromatography and circular dichroism spectroscopy revealed a pH dependent loss of quaternary and secondary structure.CONCLUSION: Under gastric conditions, the iron core of pea ferritin is released into the digestive medium due to acid induced structural alterations and dissociation of protein. The released iron interacts with dietary factors leading to modulation of pea ferritin iron bioavailability,resembling the typical characteristics of non-heme iron.展开更多
AIM: To investigate the possible involvement of 25-hydroxyvitamin D3-1cx-hydroxylase [1α-25(OH)2D3] in butyrate-induced differentiation in human intestinal cell line Caco-2 cells. METHODS: Caco-2 cells were incub...AIM: To investigate the possible involvement of 25-hydroxyvitamin D3-1cx-hydroxylase [1α-25(OH)2D3] in butyrate-induced differentiation in human intestinal cell line Caco-2 cells. METHODS: Caco-2 cells were incubated either with 3 mmol/L butyrate and 1 umol/L 25(OH)2D3 or with 1 umol/L 1α-25(OH)2D3 for various time intervals ranging from 0 to 72 h. Additionally, cells were co-incubated with butyrate and either 25(OH)2D3 or 1α-25(OH)2D3. 1α-25(OH)2D3 mRNA was determined semi-quantitatively using the fluorescent dye PicoGreen. Immunoblotting was used for the detection of 1α-25(OH)2D3 protein. Finally, enzymatic activity was measured by ELISA. RESULTS: Both butyrate and 1α-25(OH)2D3 stimulated differentiation of Caco-2 cells after a 48 h incubation period, while 25(OH)2D3 had no impact on cell differentiation. Synergistic effects on differentiation were observed when cells were co-incubated with butyrate and vitamin D metabolite. Butyrate transiently upregulated 1α-25(OH)2D3 mRNA followed by a timely delayed protein upregulation. Coincidently, enzymatic activity was enhanced significantly. The induction of the enzyme allowed for comparable differentiating effects of both vitamin D metabolites. CONCLUSION: Our experimental data provide a further mechanism for the involvement of the vitamin D signaling pathway in colonic epithelial cell differentiation by butyrate. The enhancement of 1α-25(OH)2D3 followed by antiproliferative effects of the vitamin D prohormone in the Caco-2 cell line suggest that 25(OH)2D3 in combination with butyrate may offer a new therapeutic approach forthe treatment of colon cancer.展开更多
Overloading the intestine enterocytes with lipids induced alteration of the Golgi complex(GC;Sesorova et al.,2020)and could cause glycosylation errors.Here,using differentiated Caco-2 cells with the established 0[I]bl...Overloading the intestine enterocytes with lipids induced alteration of the Golgi complex(GC;Sesorova et al.,2020)and could cause glycosylation errors.Here,using differentiated Caco-2 cells with the established 0[I]blood group phenotype(no expression of the blood antigens A and B[AgA,AgB]under normal conditions)as a model of human enterocytes we examined whether the overloading of these cells with lipids could cause errors in the Golgi-dependent glycosylation.We demonstrated that under these conditions,there were alterations of the GC and the appearance of lipid droplets in the cytoplasm.Rare cells produced AgA and AgB.This suggested that after overloading of enterocytes with lipids,AgA were mistakenly synthesized in individual enterocytes by the Golgi glycosyltransferases.These mistakes could explain why in the absence of AgA and AgB antibodies against them exist in the blood.展开更多
Soybeans are known as a promising source of bioactive peptides.However,knowledge on the antioxidant behaviors of soybean protein hydrolysate(SPH)in the human intestinal epithelium is limited.In this study,SPH was prep...Soybeans are known as a promising source of bioactive peptides.However,knowledge on the antioxidant behaviors of soybean protein hydrolysate(SPH)in the human intestinal epithelium is limited.In this study,SPH was prepared with Alcalase and subsequently ultrafiltered into four peptide fractions as SPH-I(<3 kDa),SPH-II(3~5 k Da),SPH-III(5~10 k Da)and SPH-IV(>10 kDa).The antioxidant properties of SPH and membrane fractions were investigated using different chemical assays and their protective effects against oxidative stress were evaluated using H2 O2-stressed human intestinal Caco-2 cells.Results showed that SPH-I exhibited the strongest 2,2-diphenyl-1-picrylhydrazyl(DPPH)radical scavenging activity(IC50=2.56 mg/m L)and reducing capacity while SPH-III had the best metal ion-chelating activity(IC50=0.29 mg/m L).Both SPH and the peptide fractions dose-dependently suppressed intracellular reactive oxygen species(ROS)accumulation induced by H2O2 in Caco-2 cells,but the strongest inhibitory effect was observed for SPH-I.Amino acid(AA)results revealed that SPH-I was rich in hydrophobic and antioxidant AAs,which could contribute to its stronger antioxidant properties.Additionally,SPH-I protected Caco-2 cells from H2O2-induced oxidative stress via inhibiting lipid peroxidation and stimulating antioxidant enzyme activities.These results suggest that SPH-I and constitutive peptides can be beneficial ingredients with antioxidant properties and protective effects against ROS-mediated intestinal injury.展开更多
AIM: To determine the regulation effects of recombinant human growth hormone (rhGH) on dipeptide transporter (PepT1) in Caco-2 cells with normal culture and anoxia/reoxygenation injury.METHODS: A human intestinal cell...AIM: To determine the regulation effects of recombinant human growth hormone (rhGH) on dipeptide transporter (PepT1) in Caco-2 cells with normal culture and anoxia/reoxygenation injury.METHODS: A human intestinal cell monolayer (Caco-2) was used as the in vitro model of human small intestine and cephalexin as the model substrate for dipeptide transporter (PepT1). Caco-2 cells grown on Transwell membrane filters were preincubated in the presence of rhGH in the culture medium for 4 d, serum was withdrawn from monolayers for 24 h before each experiment. The transport experiments of cephalexin across apical membromes were then conducted;Caco-2 cells grown on multiple well dishes (24 pore) with normal culture or anoxia/reoxygenation injury were preincubated with rhGH as above and uptake of cephalexin was then measured.RESULTS: The transport and uptake of cephelaxin across apical membranes of Caco-2 cells after preincubation with rhGH were significantly increased compared with controls (P=0.045, 0.0223). Also, addition of rhGH at physiological concentration (34 nM) to incubation medium greatly stimulates cephalexin uptake by anoxia/reoxygenation injuried Caco-2 cells (P=0.0116), while the biological functions of PepT1 in injured Caco-2 cells without rhGH were markedly downregulated. Northem blot analysis showed that the level of PepT1 mRNA of rhGH-treated injured Caco-2cells was greatly increased compared to controls.CONCLUSION: The present results of rhGH stimulating the uptake and transport of cephalexin indicated that rhGH greatly upregulates the physiological effects of dipeptide transporters of Caco-2 cells. The alteration in the gene expression may be a mechanism of regulation of PepT1. In addition, Caco-2 cells take up cephalexin by the Proton-dependent dipeptide transporters that closely resembles the transporters present in the intestine. Caco-2 cells represent an ideal cellular model for future studies of the dipeptide transporter.展开更多
The present study aimed at making a rational usage for European eel bone by-products by preparing Europen eel bone peptide chelated calcium(EBPC-Ca).Nutritional properties and bioactivity of EBPC-Ca were evaluated.Res...The present study aimed at making a rational usage for European eel bone by-products by preparing Europen eel bone peptide chelated calcium(EBPC-Ca).Nutritional properties and bioactivity of EBPC-Ca were evaluated.Results showed that nutritional properties of calcium ions will cause intra-and inter-molecular folding and aggregation of peptide to uniformly form EBPC-Ca chelate.The chelated compound of EBPC and calcium ion triggered a strong apoptosis in heterogeneous human epithelial colorectal adenocarcinoma(Caco-2)in concentration-and time-dependent manners.Western blot analysis revealed that the EBPC-Ca induced apoptosis may be the result of a blocked autophagy flux through mitochondrial-dependent pathway.Additionally,the increase in FGF-23 protein expression inhibited the absorption of calcium ions and alleviated cell apoptosis.It was also found that the cell apoptosis occurs with significant increases in the levels of reactive oxygen species(ROS)and Ca^(2+)in the cells,indicating the anti-tumor potential of EBPC-Ca may involve multiple channels.展开更多
Aim The present study developed a CYP3A4-expressed Caco-2 monolayer model at which effects of the efflux-metabolism alliance on the transport and uptake of clausenamide(CLA) enantiomers as CYP3A4 substrates were inv...Aim The present study developed a CYP3A4-expressed Caco-2 monolayer model at which effects of the efflux-metabolism alliance on the transport and uptake of clausenamide(CLA) enantiomers as CYP3A4 substrates were investigated. The apparent permeability coefficients (Papp) of ( - ) and ( + )CLA were higher in the ab- sorptive direction than those in the secretory direction with efflux ratios(ER) of 0. 709 ± 0.411 and 0. 867± 0. 250 ( Х10^-6 -1 cm · s ), respectively. Their bidirectional transports were significantly reduced by (75.6 ± 87.5)% af- ter treatment with verapamil ( a P-glycoprotein inhibitor) that increased the rate of metabolism by CYP3 A4, whereas the CYP3A4 inhibitor ketoconazole treatment markedly enhanced the basolateral to apical flux of ( - ) and ( + ) CLA with ERs being 2. 934 ± 1. 432 and 1. 877 ± 0. 148 ( Х 10^-6 cm/s) respectively. These changes could be blocked by the duel CYP3A4/P-glycoprotein inhibitor cyclosporine A, consequently, Papp values for CLA enanti- omers in both directions were significantly greater than those obtained by using verapamil or ketoconazole, and their ERs were similar to those following ( - ) or ( + )-isomer treatment alone. Furthermore, the uptake of ( - )CLA was more than that of ( + )CLA in the transfected cells. Incubation with ketoeonazole decreased the intracellular concentrations of the two enantiomers. This effect disappeared in the presence of a CYP3A4 inducer dexametha- sone. These results indicated that CYP3A4 could influence P-gp efflux, transport and uptake of CLA enantiomers as CYP3A4 substrates and that a duel inhibition to CYP3A4/ P-glycoprotein could enhance their absorption and bioavailability, which provides new insight into the efflux-metabolism alliance and will benefit the clinical pharma- cology of (?) CLA as a candidate drug for treatment of Alzheimer' s disease.展开更多
The interactions of two types of cells (red blood cells, Caco-2 cells) with magnetic iron oxide nanoparticles (non-grafted, citrate-grafted, dendrimer-grafted) of 11 nm in size have been investigated. We focused on tw...The interactions of two types of cells (red blood cells, Caco-2 cells) with magnetic iron oxide nanoparticles (non-grafted, citrate-grafted, dendrimer-grafted) of 11 nm in size have been investigated. We focused on two important physiological parameters of the cells, the intracellular pH and the intracellular Ca2+ content. The results show that the nanoparticles do not have a significant influence on the pH and Ca2+ content of Caco-2 cells. The Ca2+ content of red blood cells is also not affected but the intracellular pH is slightly reduced.展开更多
Chito-oligosaccharide(COS)had shown a variety of biological activities and potential biomedical implications.The present study investigated the pharmacokinetics,bioavailability,and in vitro absorption of COS with degr...Chito-oligosaccharide(COS)had shown a variety of biological activities and potential biomedical implications.The present study investigated the pharmacokinetics,bioavailability,and in vitro absorption of COS with degrees of polymerization(DPs)2-7 and explored the influence of DPs on them.From Caco-2 cell permeation studies,COS were low permeability compounds with no directional effects,suggesting a low in vivo absorption mediated by facilitation diffusion and paracellular absorption.After an intragastrical administration to rats,COS2 showed the highest systemic exposure in six oligosaccharides.The bioavailability of COS2-7 was 7.33%,6.11%,4.67%,4.13%,4.02%,0.99%,respectively.Differences in bioavailability for each COS correlated to structural variations,with high DPs contributing to a decrease in bioavailability.In conclusion,COS could be absorbed by the intestinal tract both in vitro and in vivo.The very low oral bioavailability of COS could be due to low permeability.DPs can affect absorption and bioavailability of COS2-7.This study provided evidence for the absorption characteristics of COS2-7 to help us better understanding the pharmacological actions.展开更多
The objective of the present study was to compare the toxicity and availability of Fe(II) and Fe(III) to Caco-2 cells. Cellular damage was studied by measuring cell proliferation and lactate dehydrogenase (LDH) releas...The objective of the present study was to compare the toxicity and availability of Fe(II) and Fe(III) to Caco-2 cells. Cellular damage was studied by measuring cell proliferation and lactate dehydrogenase (LDH) release. The activities of two major antioxidative enzymes [superoxide dismutase (SOD) and glutathione peroxidase (GPx)] and differentiation marker (alkaline phosphatase) were determined after the cells were exposed to different levels of iron salts. The cellular iron concentration was investigated to evaluate iron bioavailability. The results show that iron uptake of the cells treated with Fe(II) is significantly higher than that of the cells treated with Fe(III) (P<0.05). Fe(II) at a concentration >1.5 mmol/L was found to be more effective in reducing cellular viability than Fe(III). LDH release investigation suggests that Fe(II) can reduce stability of the cell membrane. The activities of SOD and GPx of the cells treated with Fe(II) were higher than those of the cells treated with Fe(III), although both of them increased with raising iron supply levels. The results indicate that both Fe(II) and Fe(III) could reduce the cellular antioxidase gene expression at high levels.展开更多
Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat...Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.展开更多
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus...Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat...Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside.展开更多
Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapaglif...Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapagliflozin(DAP),Empagliflozin(EMP),and Doxorubicin(DOX),using in vitro experimentation.The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin(DOX)in MCF-7 cells.Interestingly,it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth.Notably,when these medications were combined with DOX,there was a considerable inhibition of glucose consumption,as well as reductions in intracellular ATP and lactate levels.Moreover,this effect was found to be dependent on the dosages of the drugs.In addition to effectively inhibiting the cell cycle,the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression.This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications,namely CAN,DAP,and EMP,on the responsiveness to the anticancer properties of DOX.The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.展开更多
Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the an...Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the antioxidative and anti-aging effects of naringin and explore the underlying mechanisms.The results showed that naringin inhibited H_(2)O_(2)-induced decline in cell viability and decreased,the content of reactive oxygen species in cells.Meanwhile,naringin prolonged the lifespan of flies,enhanced the abilities of climbing and the resistance to stress,improved the activities of antioxidant enzymes,and decreased malondialdehyde content.Naringin also improved intestinal barrier dysfunction and reduced abnormal proliferation of intestinal stem cells.Moreover,naringin down-regulated the mRNA expressions of inr,chico,pi 3k,and akt-1,and up-regulated the mRNA expressions of dilp2,dilp3,dilp5,and foxo,thereby activating autophagy-related genes and increasing the number of lysosomes.Furthermore,the mutant stocks assays and computer molecular simulation results further indicated that naringin delayed aging by inhibiting the insulin signaling(IIS)pathway and activating the autophagy pathway,which was consistent with the result of network pharmacological predictions.展开更多
In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extract...In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment.展开更多
CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization...CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization rate of CsPbI_(2)Br films,resulting in small grain size and high defect density.Additionally,CsPbI_(2)Br demonstrates poor light absorption due to its wide bandgap.Therefore,it is crucial to control the crystallization rate and increase the film thickness to reduce defect density,enhance light absorption,and improve photovoltaic performance.In this study,we utilized a PbAc_(2)-incorporated twice spincoating(PTS) process to address these issues.Initially,PbAc_(2) was added to the CsPbI_(2)Br precursor solution to form a CsPbI_(2)Br film,which was then coated with the CsPbI_(2)Br precursor solution to produce the PTS film,Ac^(-)can delay the perovskite crystallization,leading to the formation of thicker and denser CsPbI_(2)Br films.Moreover,lone-pair electrons of the oxygen atom provided by Ac^(-)formed coordination bonds with under-coordinated Pb~(2+) ions to fill halogen ion vacancies,thereby reducing the defect density.Ultimately,the PTS CsPbI_(2)Br device achieved a peak power conversion efficiency(PCE) of 16.19% and maintained 96.7% of its initial PCE over 1500 h at room temperature under 25% relative humidity without any encapsulation.展开更多
All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocess...All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocessed CsPbIBr_(2) perovskite films with large thicknesses remains challenging.Here,we develop a triple-component precursor(TCP) by employing lead bromide,lead iodide,and cesium bromide,to replace the most commonly used double-component precursor(DCP) consisting of lead bromide and cesium iodide.Remarkably,the TCP system significantly increases the solution concentration to 1.3 M,leading to a larger film thickness(~390 nm) and enhanced light absorption.The resultant CsPbIBr_(2) films were evaluated in planar n-i-p structured solar cells,which exhibit a considerably higher optimal photocurrent density of 11.50 mA cm^(-2) in comparison to that of DCP-based devices(10.69 mA cm^(-2)).By adopting an organic surface passivator,the maximum device efficiency using TCP is further boosted to a record efficiency of 12.8% for CsPbIBr_(2) perovskite solar cells.展开更多
基金Supported by the Natural Science Foundation of Hebei Province,No. 303158 Education Department Foundation of Hebei Province,No. 2002136
文摘AIM: To determine the method of growing small intestinal epithelial cells in short-term primary culture and to investigate the effect of extracellular iron concentration ([Fe3+]) on calcium absorption and the relationship between the rising intracellular calcium concentration ([Ca2+]i) and cell apoptosis in human intestinal epithelial Caco-2 cells. METHODS: Primary culture was used for growing small intestinal epithelial cells. [Ca2+]i was detected by a confocal laser scanning microscope. The changes in [Ca2+]i were represented by fluorescence intensity (FI). The apoptosis was evaluated by flow cytometry. RESULTS: Isolation of epithelial cells and preservation of its three-dimensional integrity were achieved using the digestion technique of a mixture of collagenase Ⅺ and dispase Ⅰ. Purification of the epithelial cells was facilitated by using a simple differential sedimentation method. The results showed that proliferation of normal gut epithelium in vitro was initially dependent upon the maintenance of structural integrity of the tissue. If 0.25% trypsin was used for digestion, the cells were severely damaged and very difficult to stick to the Petri dish for growing. The Fe3+ chelating agent desferrioxamine (100, 200 and 300 μmol/L) increased the FI of Caco-2 cells from 27.50±13.18 (control, n = 150) to 35.71±13.99 (n = 150, P<0.01), 72.19±35.40 (n = 150, P<0.01) and 211.34±29.03 (n = 150,P<0.01) in a concentration-dependent manner. There was a significant decrease in the FI of Caco-2 cells treated by ferric ammonium citrate (FAC, a Fe3+ donor; 10, 50 and 100 μmol/L). The FI value of Caco-2 cells treated by FAC was 185.85±33.77 (n = 150, P<0.01), 122.73±58.47 (n = 150, P<0.01), and 53.29±19.82 (n= 150,P<0.01), respectively, suggesting that calcium absorption was influenced by [Fe3+]. Calcium ionophore A23187(0.1,1.0 and 10 μmol/L) increased the FI of Caco-2 cells from 40.45±13.95 (control, n = 150) to 45.19±21.95 (n = 150, P<0.01), 89.87±43.29 (n = 150, P<0.01) and 104.64±51.07 (n = 150,P<0.01) in a concentration-dependent manner. The positive apoptotic cell number of the Caco-2 cells after being treated with A23187 increased from 0.32% to 0.69%, 0.90% and 1.10%, indicating that the increase in the positive apoptotic cell number was positively correlated with [Ca2+]i. CONCLUSION: Ca2+ absorbability is increased with the decrease of extracellular iron concentration Fe3+ and hindered with the increase of Fe3+ consistence out of them. Furthermore, increase of [Ca2+]i can induce apoptosis in Caco-2 cells.
基金Supported by a grant No. BT/PR6728/AGR/02/334/2005 from the Department of Biotechnology, Government of India to KMN and RP, SB is supported by a Research Fellowship from the Indian Council of Medical Research
文摘AIM: To understand the digestive stability and mechanism of release and intestinal uptake of pea ferritin iron in caco-2 cell line model.METHODS: Pea seed ferritin was purified using salt fractionation followed by gel filtration chromatography.The bioavailability of ferritin iron was assessed using coupled in vitro digestion/Caco-2 cell model in the presence or absence of ascorbic acid and phytic acid.Caco-2 cell ferritin formation was used as a surrogate marker of iron uptake. Structural changes of pea ferritin under simulated gastric pH were characterized using electrophoresis, gel filtration and circular dichroism spectroscopy.RESULTS: The caco-2 cell ferritin formation was significantly increased (P 〈 0.001) with FeSO4 (19.3±9.8 ng/mg protein) and pea ferritin (13.9 ± 6.19 ng/mg protein) compared to the blank digest (3.7 ± 1.8 ng/mg protein). Ascorbic acid enhanced while phytic acid decreased the pea ferritin iron bioavailability. However,either in the presence or absence of ascorbic acid, the ferritin content of caco-2 cells was significantly less with pea ferritin than with FeSO4. At gastric pH, no band corresponding to ferritin was observed in the presence of pepsin either on native PAGE or SDS-PAGE. Gel filtration chromatography and circular dichroism spectroscopy revealed a pH dependent loss of quaternary and secondary structure.CONCLUSION: Under gastric conditions, the iron core of pea ferritin is released into the digestive medium due to acid induced structural alterations and dissociation of protein. The released iron interacts with dietary factors leading to modulation of pea ferritin iron bioavailability,resembling the typical characteristics of non-heme iron.
基金Supported by the Else Kroner-Fresenius Foundation, Bad Homburg, Germany
文摘AIM: To investigate the possible involvement of 25-hydroxyvitamin D3-1cx-hydroxylase [1α-25(OH)2D3] in butyrate-induced differentiation in human intestinal cell line Caco-2 cells. METHODS: Caco-2 cells were incubated either with 3 mmol/L butyrate and 1 umol/L 25(OH)2D3 or with 1 umol/L 1α-25(OH)2D3 for various time intervals ranging from 0 to 72 h. Additionally, cells were co-incubated with butyrate and either 25(OH)2D3 or 1α-25(OH)2D3. 1α-25(OH)2D3 mRNA was determined semi-quantitatively using the fluorescent dye PicoGreen. Immunoblotting was used for the detection of 1α-25(OH)2D3 protein. Finally, enzymatic activity was measured by ELISA. RESULTS: Both butyrate and 1α-25(OH)2D3 stimulated differentiation of Caco-2 cells after a 48 h incubation period, while 25(OH)2D3 had no impact on cell differentiation. Synergistic effects on differentiation were observed when cells were co-incubated with butyrate and vitamin D metabolite. Butyrate transiently upregulated 1α-25(OH)2D3 mRNA followed by a timely delayed protein upregulation. Coincidently, enzymatic activity was enhanced significantly. The induction of the enzyme allowed for comparable differentiating effects of both vitamin D metabolites. CONCLUSION: Our experimental data provide a further mechanism for the involvement of the vitamin D signaling pathway in colonic epithelial cell differentiation by butyrate. The enhancement of 1α-25(OH)2D3 followed by antiproliferative effects of the vitamin D prohormone in the Caco-2 cell line suggest that 25(OH)2D3 in combination with butyrate may offer a new therapeutic approach forthe treatment of colon cancer.
文摘Overloading the intestine enterocytes with lipids induced alteration of the Golgi complex(GC;Sesorova et al.,2020)and could cause glycosylation errors.Here,using differentiated Caco-2 cells with the established 0[I]blood group phenotype(no expression of the blood antigens A and B[AgA,AgB]under normal conditions)as a model of human enterocytes we examined whether the overloading of these cells with lipids could cause errors in the Golgi-dependent glycosylation.We demonstrated that under these conditions,there were alterations of the GC and the appearance of lipid droplets in the cytoplasm.Rare cells produced AgA and AgB.This suggested that after overloading of enterocytes with lipids,AgA were mistakenly synthesized in individual enterocytes by the Golgi glycosyltransferases.These mistakes could explain why in the absence of AgA and AgB antibodies against them exist in the blood.
基金financially supported by the National Natural Science Foundation of China(No.31430067,31601475,31571876,and 31671807)the 13th Five-Year Plan(No.2016YFD0401402)
文摘Soybeans are known as a promising source of bioactive peptides.However,knowledge on the antioxidant behaviors of soybean protein hydrolysate(SPH)in the human intestinal epithelium is limited.In this study,SPH was prepared with Alcalase and subsequently ultrafiltered into four peptide fractions as SPH-I(<3 kDa),SPH-II(3~5 k Da),SPH-III(5~10 k Da)and SPH-IV(>10 kDa).The antioxidant properties of SPH and membrane fractions were investigated using different chemical assays and their protective effects against oxidative stress were evaluated using H2 O2-stressed human intestinal Caco-2 cells.Results showed that SPH-I exhibited the strongest 2,2-diphenyl-1-picrylhydrazyl(DPPH)radical scavenging activity(IC50=2.56 mg/m L)and reducing capacity while SPH-III had the best metal ion-chelating activity(IC50=0.29 mg/m L).Both SPH and the peptide fractions dose-dependently suppressed intracellular reactive oxygen species(ROS)accumulation induced by H2O2 in Caco-2 cells,but the strongest inhibitory effect was observed for SPH-I.Amino acid(AA)results revealed that SPH-I was rich in hydrophobic and antioxidant AAs,which could contribute to its stronger antioxidant properties.Additionally,SPH-I protected Caco-2 cells from H2O2-induced oxidative stress via inhibiting lipid peroxidation and stimulating antioxidant enzyme activities.These results suggest that SPH-I and constitutive peptides can be beneficial ingredients with antioxidant properties and protective effects against ROS-mediated intestinal injury.
基金National Natural Science Foundation of China,No. 39970862
文摘AIM: To determine the regulation effects of recombinant human growth hormone (rhGH) on dipeptide transporter (PepT1) in Caco-2 cells with normal culture and anoxia/reoxygenation injury.METHODS: A human intestinal cell monolayer (Caco-2) was used as the in vitro model of human small intestine and cephalexin as the model substrate for dipeptide transporter (PepT1). Caco-2 cells grown on Transwell membrane filters were preincubated in the presence of rhGH in the culture medium for 4 d, serum was withdrawn from monolayers for 24 h before each experiment. The transport experiments of cephalexin across apical membromes were then conducted;Caco-2 cells grown on multiple well dishes (24 pore) with normal culture or anoxia/reoxygenation injury were preincubated with rhGH as above and uptake of cephalexin was then measured.RESULTS: The transport and uptake of cephelaxin across apical membranes of Caco-2 cells after preincubation with rhGH were significantly increased compared with controls (P=0.045, 0.0223). Also, addition of rhGH at physiological concentration (34 nM) to incubation medium greatly stimulates cephalexin uptake by anoxia/reoxygenation injuried Caco-2 cells (P=0.0116), while the biological functions of PepT1 in injured Caco-2 cells without rhGH were markedly downregulated. Northem blot analysis showed that the level of PepT1 mRNA of rhGH-treated injured Caco-2cells was greatly increased compared to controls.CONCLUSION: The present results of rhGH stimulating the uptake and transport of cephalexin indicated that rhGH greatly upregulates the physiological effects of dipeptide transporters of Caco-2 cells. The alteration in the gene expression may be a mechanism of regulation of PepT1. In addition, Caco-2 cells take up cephalexin by the Proton-dependent dipeptide transporters that closely resembles the transporters present in the intestine. Caco-2 cells represent an ideal cellular model for future studies of the dipeptide transporter.
基金supported by National Natural Science Foundation of China(NSFC,Grant No.31801459,Grant No.32072209)China Postdoctoral Science Foundation Funded Project(2020M682073)+1 种基金the Science and Technology General Projects of Fujian Province(2019J01393)Program of Innovative Research Team in Science and Technology in Fujian Province University([2020]12)。
文摘The present study aimed at making a rational usage for European eel bone by-products by preparing Europen eel bone peptide chelated calcium(EBPC-Ca).Nutritional properties and bioactivity of EBPC-Ca were evaluated.Results showed that nutritional properties of calcium ions will cause intra-and inter-molecular folding and aggregation of peptide to uniformly form EBPC-Ca chelate.The chelated compound of EBPC and calcium ion triggered a strong apoptosis in heterogeneous human epithelial colorectal adenocarcinoma(Caco-2)in concentration-and time-dependent manners.Western blot analysis revealed that the EBPC-Ca induced apoptosis may be the result of a blocked autophagy flux through mitochondrial-dependent pathway.Additionally,the increase in FGF-23 protein expression inhibited the absorption of calcium ions and alleviated cell apoptosis.It was also found that the cell apoptosis occurs with significant increases in the levels of reactive oxygen species(ROS)and Ca^(2+)in the cells,indicating the anti-tumor potential of EBPC-Ca may involve multiple channels.
文摘Aim The present study developed a CYP3A4-expressed Caco-2 monolayer model at which effects of the efflux-metabolism alliance on the transport and uptake of clausenamide(CLA) enantiomers as CYP3A4 substrates were investigated. The apparent permeability coefficients (Papp) of ( - ) and ( + )CLA were higher in the ab- sorptive direction than those in the secretory direction with efflux ratios(ER) of 0. 709 ± 0.411 and 0. 867± 0. 250 ( Х10^-6 -1 cm · s ), respectively. Their bidirectional transports were significantly reduced by (75.6 ± 87.5)% af- ter treatment with verapamil ( a P-glycoprotein inhibitor) that increased the rate of metabolism by CYP3 A4, whereas the CYP3A4 inhibitor ketoconazole treatment markedly enhanced the basolateral to apical flux of ( - ) and ( + ) CLA with ERs being 2. 934 ± 1. 432 and 1. 877 ± 0. 148 ( Х 10^-6 cm/s) respectively. These changes could be blocked by the duel CYP3A4/P-glycoprotein inhibitor cyclosporine A, consequently, Papp values for CLA enanti- omers in both directions were significantly greater than those obtained by using verapamil or ketoconazole, and their ERs were similar to those following ( - ) or ( + )-isomer treatment alone. Furthermore, the uptake of ( - )CLA was more than that of ( + )CLA in the transfected cells. Incubation with ketoeonazole decreased the intracellular concentrations of the two enantiomers. This effect disappeared in the presence of a CYP3A4 inducer dexametha- sone. These results indicated that CYP3A4 could influence P-gp efflux, transport and uptake of CLA enantiomers as CYP3A4 substrates and that a duel inhibition to CYP3A4/ P-glycoprotein could enhance their absorption and bioavailability, which provides new insight into the efflux-metabolism alliance and will benefit the clinical pharma- cology of (?) CLA as a candidate drug for treatment of Alzheimer' s disease.
文摘The interactions of two types of cells (red blood cells, Caco-2 cells) with magnetic iron oxide nanoparticles (non-grafted, citrate-grafted, dendrimer-grafted) of 11 nm in size have been investigated. We focused on two important physiological parameters of the cells, the intracellular pH and the intracellular Ca2+ content. The results show that the nanoparticles do not have a significant influence on the pH and Ca2+ content of Caco-2 cells. The Ca2+ content of red blood cells is also not affected but the intracellular pH is slightly reduced.
基金the Shandong Provincial Natural Science Foundation,China(No.ZR2019BC025)the Fundamental Research Funds for the Central Universities(Nos.201912008,201964019)。
文摘Chito-oligosaccharide(COS)had shown a variety of biological activities and potential biomedical implications.The present study investigated the pharmacokinetics,bioavailability,and in vitro absorption of COS with degrees of polymerization(DPs)2-7 and explored the influence of DPs on them.From Caco-2 cell permeation studies,COS were low permeability compounds with no directional effects,suggesting a low in vivo absorption mediated by facilitation diffusion and paracellular absorption.After an intragastrical administration to rats,COS2 showed the highest systemic exposure in six oligosaccharides.The bioavailability of COS2-7 was 7.33%,6.11%,4.67%,4.13%,4.02%,0.99%,respectively.Differences in bioavailability for each COS correlated to structural variations,with high DPs contributing to a decrease in bioavailability.In conclusion,COS could be absorbed by the intestinal tract both in vitro and in vivo.The very low oral bioavailability of COS could be due to low permeability.DPs can affect absorption and bioavailability of COS2-7.This study provided evidence for the absorption characteristics of COS2-7 to help us better understanding the pharmacological actions.
基金the International Cooperative Project from the Ministry of Science and Technology of China (No. 2006DFA31030)the Bureau of Science and Technology of Zhejiang Province (No. 2006C32019)+1 种基金 HarvestPlus-China (No. 8022)the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0536)
文摘The objective of the present study was to compare the toxicity and availability of Fe(II) and Fe(III) to Caco-2 cells. Cellular damage was studied by measuring cell proliferation and lactate dehydrogenase (LDH) release. The activities of two major antioxidative enzymes [superoxide dismutase (SOD) and glutathione peroxidase (GPx)] and differentiation marker (alkaline phosphatase) were determined after the cells were exposed to different levels of iron salts. The cellular iron concentration was investigated to evaluate iron bioavailability. The results show that iron uptake of the cells treated with Fe(II) is significantly higher than that of the cells treated with Fe(III) (P<0.05). Fe(II) at a concentration >1.5 mmol/L was found to be more effective in reducing cellular viability than Fe(III). LDH release investigation suggests that Fe(II) can reduce stability of the cell membrane. The activities of SOD and GPx of the cells treated with Fe(II) were higher than those of the cells treated with Fe(III), although both of them increased with raising iron supply levels. The results indicate that both Fe(II) and Fe(III) could reduce the cellular antioxidase gene expression at high levels.
基金financially supported by the National Key Research and Development Program of China(2021YFD2100904)the National Natural Science Foundation of China(31871729,32172147)+2 种基金the Modern Agriculture key Project of Jiangsu Province of China(BE2022317)the Modern Agricultural Industrial Technology System Construction Project of Jiangsu Province of China(JATS[2021]522)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.
基金supported by the National Natural Science Foundation of China,Nos.82171172(to RZ)and 81771366(to RZ)Fundamental Research Funds for the Central Universities of Central South University,Nos.2021zzts1095(to SZ)and 2022zzts0832(to HY)。
文摘Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金supported by the Open Project Program of the State Key Laboratory of Food Nutrition and Safety,Tianjin University of Science and Technology(No.SKLFNS-KF-202201)the Open Project of the Key Laboratory of Environmental Pollution Monitoring and Disease Control,Ministry of Education,Guizhou Medical University,China(No.GMU-2022-HJZ-06)。
文摘Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside.
基金funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia,under Grant No.KEP-1-166-41The authors,therefore,acknowledge DSR,with thanks for their technical and financial support.
文摘Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapagliflozin(DAP),Empagliflozin(EMP),and Doxorubicin(DOX),using in vitro experimentation.The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin(DOX)in MCF-7 cells.Interestingly,it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth.Notably,when these medications were combined with DOX,there was a considerable inhibition of glucose consumption,as well as reductions in intracellular ATP and lactate levels.Moreover,this effect was found to be dependent on the dosages of the drugs.In addition to effectively inhibiting the cell cycle,the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression.This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications,namely CAN,DAP,and EMP,on the responsiveness to the anticancer properties of DOX.The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.
基金supported by the open project of the Key Laboratory of Environmental Pollution Monitoring and Disease Control,Ministry of Education,Guizhou Medical University,China (GMU-2022-HJZ-06)。
文摘Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the antioxidative and anti-aging effects of naringin and explore the underlying mechanisms.The results showed that naringin inhibited H_(2)O_(2)-induced decline in cell viability and decreased,the content of reactive oxygen species in cells.Meanwhile,naringin prolonged the lifespan of flies,enhanced the abilities of climbing and the resistance to stress,improved the activities of antioxidant enzymes,and decreased malondialdehyde content.Naringin also improved intestinal barrier dysfunction and reduced abnormal proliferation of intestinal stem cells.Moreover,naringin down-regulated the mRNA expressions of inr,chico,pi 3k,and akt-1,and up-regulated the mRNA expressions of dilp2,dilp3,dilp5,and foxo,thereby activating autophagy-related genes and increasing the number of lysosomes.Furthermore,the mutant stocks assays and computer molecular simulation results further indicated that naringin delayed aging by inhibiting the insulin signaling(IIS)pathway and activating the autophagy pathway,which was consistent with the result of network pharmacological predictions.
基金supported by the National Research Foundation of Korea(NRF)under the Ministry of ScienceICT&Future Planning(Basic Science Research Program[No.2021R1A5A6002853],[No.2022R1A2C3004964],[No.2022R1C1C2008126],[No.2022M3H4A1A03074093])
文摘In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment.
基金supported by the National Natural Science Foundation of China (U22A20142)the Fundamental Research Funds for the Central Universities (2023JC007)。
文摘CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization rate of CsPbI_(2)Br films,resulting in small grain size and high defect density.Additionally,CsPbI_(2)Br demonstrates poor light absorption due to its wide bandgap.Therefore,it is crucial to control the crystallization rate and increase the film thickness to reduce defect density,enhance light absorption,and improve photovoltaic performance.In this study,we utilized a PbAc_(2)-incorporated twice spincoating(PTS) process to address these issues.Initially,PbAc_(2) was added to the CsPbI_(2)Br precursor solution to form a CsPbI_(2)Br film,which was then coated with the CsPbI_(2)Br precursor solution to produce the PTS film,Ac^(-)can delay the perovskite crystallization,leading to the formation of thicker and denser CsPbI_(2)Br films.Moreover,lone-pair electrons of the oxygen atom provided by Ac^(-)formed coordination bonds with under-coordinated Pb~(2+) ions to fill halogen ion vacancies,thereby reducing the defect density.Ultimately,the PTS CsPbI_(2)Br device achieved a peak power conversion efficiency(PCE) of 16.19% and maintained 96.7% of its initial PCE over 1500 h at room temperature under 25% relative humidity without any encapsulation.
基金The authors acknowledge the financial support by the National Natural Science Foundation of China(52161145408 and 21975038)the Research and Innovation Team Project of Dalian University of Technology(DUT2022TB10)+2 种基金the Fundamental Research Funds for the Central Universities(DUT22QN213)the Innovation Technology Fund(MRP/040/21X)the Green Technology Fund(GTF202020164)for their financial support。
文摘All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocessed CsPbIBr_(2) perovskite films with large thicknesses remains challenging.Here,we develop a triple-component precursor(TCP) by employing lead bromide,lead iodide,and cesium bromide,to replace the most commonly used double-component precursor(DCP) consisting of lead bromide and cesium iodide.Remarkably,the TCP system significantly increases the solution concentration to 1.3 M,leading to a larger film thickness(~390 nm) and enhanced light absorption.The resultant CsPbIBr_(2) films were evaluated in planar n-i-p structured solar cells,which exhibit a considerably higher optimal photocurrent density of 11.50 mA cm^(-2) in comparison to that of DCP-based devices(10.69 mA cm^(-2)).By adopting an organic surface passivator,the maximum device efficiency using TCP is further boosted to a record efficiency of 12.8% for CsPbIBr_(2) perovskite solar cells.