Background:The ingestion of golden thread contaminated with heavy metals through the food chain leads to detrimental effects to human health.During digestion,not all of the heavy metals could be released to the gastro...Background:The ingestion of golden thread contaminated with heavy metals through the food chain leads to detrimental effects to human health.During digestion,not all of the heavy metals could be released to the gastrointestinal tract and readily to be absorbed by human body.Thus,bioaccessibility is an important issue in health risk assessments.Aims and Objectives:The aims and objectives of this study were to investigate the bioaccessibility of Cd in golden thread and assess the associated health risks based on the exposure to bioaccessible Cd.Materials and Methods:Inductively coupled plasma mass spectrometry(ICP-MS)has been applied to determine the Cd content in golden thread.Physiologically based extraction test(PBET)digestion was performed in the in vitro/Caco2 cell model to investigate the bioaccessibility of Cd in golden thread.Furthermore,the target hazard quotient(THQ)was used to assess the risks of the total and the bioaccessible content of Cd in golden thread.Results:The results revealed that the total Cd content in six batches of golden thread ranged from 3.203 to 5.723 mg/kg.After uptake by Caco2 cells,the bioaccessibility of Cd ranged from 42.36%to 59.73%.The results of the risk assessment indicated that prior to uptake by Caco2 cells,the THQ values of Cd for all batches of golden thread were greater than 1.However,after uptake by Caco2 cells,the THQ values of Cd in all samples were less than 1,thus suggesting that the risks were at a safe level.Conclusion:This study was the first to perform health risk assessment with bioaccessible heavy metals present in traditional Chinese medicine by PBET digestion using an in vitro/Caco2 cell model,thus enabling us to obtain more accurate and objective results while allowing us to avoid unnecessary government intervention and to establish more reasonable limit standards for heavy metals.展开更多
BACKGROUND Intestinal ischemia/reperfusion(I/R)injury is a fatal syndrome that occurs under many clinical scenarios.The apoptosis of intestinal cells caused by ischemia can cause cell damage and provoke systemic dysfu...BACKGROUND Intestinal ischemia/reperfusion(I/R)injury is a fatal syndrome that occurs under many clinical scenarios.The apoptosis of intestinal cells caused by ischemia can cause cell damage and provoke systemic dysfunction during reperfusion.However,the mechanism of I/R-induced apoptosis remains unclear.Cystic fibrosis transmembrane conductance regulator(CFTR)is a cAMP-activated chloride channel.Few researchers have paid attention to its role in intestinal I/R injury,or the relationship between CFTR and intestinal apoptosis induced by hypoxia/reoxygenation(H/R).AIM To investigate the effects of CFTR on I/R-induced intestinal apoptosis and its underlying molecular mechanisms.METHODS An intestinal I/R injury model was established in mice with superior mesenteric artery occlusion, and Caco2 cells were subjected to H/R for the simulation of I/R in vivo.RESULTSThe results suggested that CFTR overexpression significantly increased the Caco2 cell viability anddecreased cell apoptosis induced by the H/R. Interestingly, we found that the translocation of p65,an NF-κB member, from the cytoplasm to the nucleus after H/R treatment can be reversed by theoverexpression of CFTR, the NF-κB P65 would return from the nucleus to the cytoplasm asdetermined by immunostaining. We also discovered that CFTR inhibited cell apoptosis in theH/R-treated cells, and this effect was significantly curbed by the NF-κB activator BA, AKTinhibitor GSK690693 and the PI3K inhibitor LY294002. Moreover, we demonstrated that CFTRoverexpression could reverse the decreased PI3K/AKT expression induced by the I/R treatment invivo or H/R treatment in vitro.CONCLUSIONThe results of the present study indicate that the overexpression of CFTR protects Caco2 cells fromH/R-induced apoptosis;furthermore, it also inhibits H/R-induced apoptosis through thePI3K/AKT/NF-κB signaling pathway in H/R-treated Caco2 cells and intestinal tissues.展开更多
基金financially supported by the 13th Five-Year National Significant New Drugs Creation Feature Subjects grant(2018ZX09735006)by the Project for Medicine and Medical Instruments Review and Approval System Reform grant(ZG2016-1)
文摘Background:The ingestion of golden thread contaminated with heavy metals through the food chain leads to detrimental effects to human health.During digestion,not all of the heavy metals could be released to the gastrointestinal tract and readily to be absorbed by human body.Thus,bioaccessibility is an important issue in health risk assessments.Aims and Objectives:The aims and objectives of this study were to investigate the bioaccessibility of Cd in golden thread and assess the associated health risks based on the exposure to bioaccessible Cd.Materials and Methods:Inductively coupled plasma mass spectrometry(ICP-MS)has been applied to determine the Cd content in golden thread.Physiologically based extraction test(PBET)digestion was performed in the in vitro/Caco2 cell model to investigate the bioaccessibility of Cd in golden thread.Furthermore,the target hazard quotient(THQ)was used to assess the risks of the total and the bioaccessible content of Cd in golden thread.Results:The results revealed that the total Cd content in six batches of golden thread ranged from 3.203 to 5.723 mg/kg.After uptake by Caco2 cells,the bioaccessibility of Cd ranged from 42.36%to 59.73%.The results of the risk assessment indicated that prior to uptake by Caco2 cells,the THQ values of Cd for all batches of golden thread were greater than 1.However,after uptake by Caco2 cells,the THQ values of Cd in all samples were less than 1,thus suggesting that the risks were at a safe level.Conclusion:This study was the first to perform health risk assessment with bioaccessible heavy metals present in traditional Chinese medicine by PBET digestion using an in vitro/Caco2 cell model,thus enabling us to obtain more accurate and objective results while allowing us to avoid unnecessary government intervention and to establish more reasonable limit standards for heavy metals.
基金Supported by National Natural Science Foundation of China, No.81800473"Young Eagle Project"of Air Force Medical University, No.KT2021DX007
文摘BACKGROUND Intestinal ischemia/reperfusion(I/R)injury is a fatal syndrome that occurs under many clinical scenarios.The apoptosis of intestinal cells caused by ischemia can cause cell damage and provoke systemic dysfunction during reperfusion.However,the mechanism of I/R-induced apoptosis remains unclear.Cystic fibrosis transmembrane conductance regulator(CFTR)is a cAMP-activated chloride channel.Few researchers have paid attention to its role in intestinal I/R injury,or the relationship between CFTR and intestinal apoptosis induced by hypoxia/reoxygenation(H/R).AIM To investigate the effects of CFTR on I/R-induced intestinal apoptosis and its underlying molecular mechanisms.METHODS An intestinal I/R injury model was established in mice with superior mesenteric artery occlusion, and Caco2 cells were subjected to H/R for the simulation of I/R in vivo.RESULTSThe results suggested that CFTR overexpression significantly increased the Caco2 cell viability anddecreased cell apoptosis induced by the H/R. Interestingly, we found that the translocation of p65,an NF-κB member, from the cytoplasm to the nucleus after H/R treatment can be reversed by theoverexpression of CFTR, the NF-κB P65 would return from the nucleus to the cytoplasm asdetermined by immunostaining. We also discovered that CFTR inhibited cell apoptosis in theH/R-treated cells, and this effect was significantly curbed by the NF-κB activator BA, AKTinhibitor GSK690693 and the PI3K inhibitor LY294002. Moreover, we demonstrated that CFTRoverexpression could reverse the decreased PI3K/AKT expression induced by the I/R treatment invivo or H/R treatment in vitro.CONCLUSIONThe results of the present study indicate that the overexpression of CFTR protects Caco2 cells fromH/R-induced apoptosis;furthermore, it also inhibits H/R-induced apoptosis through thePI3K/AKT/NF-κB signaling pathway in H/R-treated Caco2 cells and intestinal tissues.