We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combi...We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combination of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling algorithm to a double-ring shaped radially and azimuthally polarized beam.展开更多
The roll forming process is applied to the manufacturing of high frequency welded (HFW) pipes,section steels,etc. In this paper,the roll forming process of the HFW pipe is simulated with the finite element method (FEM...The roll forming process is applied to the manufacturing of high frequency welded (HFW) pipes,section steels,etc. In this paper,the roll forming process of the HFW pipe is simulated with the finite element method (FEM). A user-defined material routine of the commercial finite element code ABAQUS/Explicit is developed,and the mixed hardening constitution model is realized through the user-defined material routine. Based on the mixed hardening constitutive equation,the numerical simulation of roll forming process of HFW pipe is performed. The evolutions of equivalent stress and strain are analyzed,and the calculated results are also compared between different hardening models. The results show that the different material hardening models have some important effects on the variation of equivalent stress and strain of strip steel during the simulation of the roll forming process.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.91750202,11530046,and 11474156)the National Key R&D Program of China(No.2017YFA0303700)+1 种基金the Collaborative Innovation Center of Advanced Microstructures of Chinathe Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics of China
文摘We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combination of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling algorithm to a double-ring shaped radially and azimuthally polarized beam.
基金the National Natural Science Foundation of China (No. 50375095)
文摘The roll forming process is applied to the manufacturing of high frequency welded (HFW) pipes,section steels,etc. In this paper,the roll forming process of the HFW pipe is simulated with the finite element method (FEM). A user-defined material routine of the commercial finite element code ABAQUS/Explicit is developed,and the mixed hardening constitution model is realized through the user-defined material routine. Based on the mixed hardening constitutive equation,the numerical simulation of roll forming process of HFW pipe is performed. The evolutions of equivalent stress and strain are analyzed,and the calculated results are also compared between different hardening models. The results show that the different material hardening models have some important effects on the variation of equivalent stress and strain of strip steel during the simulation of the roll forming process.