期刊文献+
共找到281篇文章
< 1 2 15 >
每页显示 20 50 100
Preparation and Characterization of Activated Carbons from Palm Nut Shells: Effects of Calcination Temperature on Porosity and Chemical Properties
1
作者 Charly Mve Mfoumou Berthy Lionel Mbouiti +2 位作者 Spenseur Bouassa Mougnala Pradel Tonda-Mikiela Guy Raymond Feuya Tchouya 《Open Journal of Inorganic Chemistry》 2024年第2期19-32,共14页
Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepare... Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions. 展开更多
关键词 Palm Nut Shells Activated Carbon calcination Temperature Porosity and Chemical Properties
下载PDF
Optimization of preparing V_2O_5 by calcination from ammonium metavanadate using response surface methodology 被引量:6
2
作者 刘秉国 彭金辉 +3 位作者 万润东 张利波 郭胜惠 张世敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期673-678,共6页
Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decompositi... Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decomposition rate was built and effects of main factors and their corresponding relationships were obtained. The results of the statistical analysis show that the decomposition rate of ammonium metavanadate is significantly affected by calcination temperature and calcination time. The optimized calcination conditions are as follows: calcination temperature 669.71 K, calcination time 35.9 min and sample mass 4.25 g. The decomposition rate of ammonium metavanadate is 99.71%,which coincides well with experimental value of 99.27% under the optimized conditions, suggesting that regressive equation fits the decomposition rates perfectly. XRD reveals that it is feasible to prepare the V2O5 by calcination from ammonium metavanadate using response surface methodology. 展开更多
关键词 vanadium pentoxide ammonium metavanadate calcination response surface methodology
下载PDF
Effect of Calcination Temperature on La-Modified Al2O3 Catalysts for Vapor Phase Hydrofluorination of Acetylene to Vinyl Fluoride 被引量:4
3
作者 毕庆员 鲁继青 +2 位作者 邢丽琼 郭明 罗孟飞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期89-94,I0002,共7页
A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts c... A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites. 展开更多
关键词 La2O3-Al2O3 catalyst Hydrofluorination reaction Vinyl fluoride ACETYLENE calcination temperature
下载PDF
Effect of Calcination Temperature on Catalytic Activity and Textual Property of Cu/HMOR Catalysts in Dimethyl Ether Carbonylation Reaction 被引量:3
4
作者 张雪 李宇萍 +4 位作者 仇松柏 王铁军 马隆龙 张琦 定明月 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期220-224,I0004,共6页
The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exch... The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers. 展开更多
关键词 Dimethyl ether Methyl acetate calcination temperature CARBONYLATION HMOR
下载PDF
Model of limestone calcination / sulfation under oxy-fuel fluidized bed combustion
5
作者 王春波 刘洪才 陈亮 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期238-243,共6页
The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stag... The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2 can react with product CaO and slow down the CaCO3 decomposition rate by the covering effect of the CaSO4 product. The sulfation rate of simultaneous calcinatiort/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The graln-micrograln model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion. 展开更多
关键词 OXY-FUEL LIMESTONE simultaneous calcination/sulfation grain-micrograin model
下载PDF
Solvent-free selective oxidation of cyclohexane with molecular oxygen over manganese oxides:Effect of the calcination temperature 被引量:2
6
作者 吴明周 詹望成 +5 位作者 郭耘 王筠松 郭杨龙 龚学庆 王丽 卢冠忠 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期184-192,共9页
The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron ... The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability. 展开更多
关键词 Manganese oxide catalyst Selective oxidation of cyclohexane OXYGEN calcination temperature Solvent-free reaction
下载PDF
Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2 被引量:1
7
作者 李金兵 姜志全 +1 位作者 王坤 黄伟新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第1期103-109,I0004,共8页
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD),... Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4. 展开更多
关键词 Co3O4/8iO2 catalyst CO oxidation calcination temperature Surface oxygen vacancies
下载PDF
Modified calcination conditions of rare alkali metal Rb-containing muscovite(KAl_2[AlSi_3O_(10)](OH)_2) 被引量:15
8
作者 Zhi-Qiang Shan Xin-Qian Shu +1 位作者 Ji-Fu Feng Wei-Ning Zhou 《Rare Metals》 SCIE EI CAS CSCD 2013年第6期632-635,共4页
Muscovite mineral was roasted in different conditions.Rubidium leaching rate was a standard to examine the impact of various factors on calcination effect,including the agent types,roasting time,mass ratio,and roastin... Muscovite mineral was roasted in different conditions.Rubidium leaching rate was a standard to examine the impact of various factors on calcination effect,including the agent types,roasting time,mass ratio,and roasting temperature.The results indicate that the best agent is the combination of sodium chloride and calcium chloride,and its mass ratio of muscovite/NaCl/CaCl2is1.00:0.25:0.25.Calcined at 850℃ for 30 min,the rubidium leaching rate is up to 90.12%.The reaction of muscovite ore with the chlorinating agent CaCl2was studied by TG/DSC,and the surface morphology before and after leaching was characterized by SEM.Rubidium chloride products can be obtained using t-BAMBP extraction,hydrochloric acid re-extraction,and purification. 展开更多
关键词 Modified calcination Muscovite ore Chlorinating agent
下载PDF
Effect of calcination temperatures on photocatalytic H_(2)O_(2)-production activity of ZnO nanorods 被引量:7
9
作者 Zicong Jiang Yong Zhang +2 位作者 Liuyang Zhang Bei Cheng Linxi Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第2期226-233,共8页
Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocataly... Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocatalytic H_(2)O_(2) production.The ZnO nanorods exhibit varied performance with different calcination temperatures.Benefiting from calcination,the separation efficiency of photo‐induced carriers is significantly improved,leading to the superior photocatalytic activity for H_(2)O_(2) production.The H_(2)O_(2) produced by ZnO calcined at 300℃ is 285μmol L^(−1),which is over 5 times larger than that produced by untreated ZnO.This work provides an insight into photocatalytic H2O2 production mechanism by ZnO nanorods,and presents a promising strategy to H2O2 production. 展开更多
关键词 PHOTOCATALYSIS Hydrogen peroxide production ZnO nanorod calcination temperature Oxygen reduction
下载PDF
Suspension calcination and alkali leaching of low-grade high-sulfur bauxite:Desulfurization, mineralogical evolution and desilication 被引量:4
10
作者 Hong-fei Wu Jun-qi Li +2 位作者 Chao-yi Chen Fei-long Xia Zhen-shan Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第5期602-610,共9页
To enable the utilization of low-grade and high-sulfur bauxite, the suspension calcination was used to remove the sulfur and the activate silica minerals, and the calcinated bauxite was subjected to a desilication pro... To enable the utilization of low-grade and high-sulfur bauxite, the suspension calcination was used to remove the sulfur and the activate silica minerals, and the calcinated bauxite was subjected to a desilication process in Na OH solution under atmospheric pressure. The desulfurization and desilication properties and mineralogical evolution were studied by X-ray diffraction, thermogravimetry–differential thermal analysis, scanning electron microscopy, and FactSage methods. The results demonstrate that the suspension calcination method is efficient for sulfur removal: 84.21% of S was removed after calcination at 1000°C for 2 min. During the calcination process, diaspore and pyrite were transferred to α-Al2O3, magnetite, and hematite. The phase transformation of pyrite follows the order FeS2 → Fe3O4 → Fe2O3, and the iron oxides and silica were converted into iron silicate. In the alkali-soluble desilication process, the optimum condition was an alkali solution concentration of 110 g/L, a reaction time of 20 min, and a reaction temperature of 95°C. The corresponding desilication ratio and alumina loss ratio were 44.9% and 2.4%, respectively, and the alumina-to-silica mass ratio of the concentrate was 7.9. The Al2O3·2SiO2, SiO2, and Al2O3 formed during the calcination process could react with Na OH solution, and their activity decreased in the order of Al2O3·2 SiO2, SiO2, and Al2O3. 展开更多
关键词 LOW-GRADE BAUXITE sulfur SUSPENSION calcination ALKALI-SOLUBLE DESILICATION Bayer process
下载PDF
Effects of Calcination Temperature on the Acidity and Catalytic Performances of HZSM-5 Zeolite Catalysts for the Catalytic Cracking of n-Butane 被引量:4
11
作者 Jiangyin Lu Zhen Zhao Chunming Xu Aijun Duan Pu Zhang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第4期213-220,共8页
The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total ... The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature. The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5 zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking. 展开更多
关键词 HZSM-5 zeolite catalyst acidic modification calcination temperature N-BUTANE catalytic cracking OLEFIN
下载PDF
Comparative catalytic study on butene/isobutane alkylation over LaX and CeX zeolites: The influence of calcination atmosphere 被引量:4
12
作者 Zhiqiang Yang Ruirui Zhang +3 位作者 Honghua Zhang Hongguo Tang Ruixia Liu Suojiang Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第6期173-183,共11页
Lanthanum-containing(LaX)and cerium-containing X zeolites(CeX)were prepared by a doubleexchange,double-calcination method.By changing the calcination atmospheres between nitrogen and air,the Ce^(IV) contents in CeX ze... Lanthanum-containing(LaX)and cerium-containing X zeolites(CeX)were prepared by a doubleexchange,double-calcination method.By changing the calcination atmospheres between nitrogen and air,the Ce^(IV) contents in CeX zeolites were adjusted and their impacts on physicochemical properties and catalytic performance in isobutane alkylation were established.The crystallinity of CeX zeolite was found to be negatively correlated with the Ce^(IV) content.This i s believed to be due to the water formed during the oxidation of Ce^(III),which facilitates the framework dealumination.As a consequence,calcining in air resulted in a great elimination of strong Brønsted acid sites while under nitrogen protection,this phenomenon was mostly hindered and the sample’s acidity was preserved.When tested in a continuously flowed slurry reactor,the catalyst lifetime for isobutane alkylation was found to be linearly related to the strong Brønsted acid concentration.In addition,Ce^(3+)was found more benefit for the hydride transfer compared with La^(3+),which is ascribed to the stronger polarization effect on the CH bond of isobutane.Moreover,the decline of hydride transfer activity can be slowed down by the catalytic cracking of the bulky molecules.Based on the product distribution,a new catalytic cycle of dimethylhexanes(DMHs)involving a direct formation of isobutene rather than tert-butyl carbocation was proposed in isobutane alkylation. 展开更多
关键词 CeX zeolite calcination atmosphere Isobutane alkylation Brønsted acid Hydride transfer
下载PDF
CO oxidation over Co_3O_4/SiO_2 catalysts:Effects of porous structure of silica and catalyst calcination temperature 被引量:4
13
作者 Jian Zheng Wei Chu +2 位作者 Hui Zhang Chengfa Jiang Xiaoyan Dai 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第6期583-588,共6页
The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 n... The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 nm.The effects of calcination temperature on the catalyst surface and micro structure properties as well as catalytic performance for the oxidation of carbon monoxide were also studied.All catalysts were characterized by N2 adsorption-desorption,XRD,XPS,FTIR,H2-TPR and O2-TPD.It was found that the properties and crystal size of cobalt-containing species strongly depended on the pore size of silica carrier.While the silica pore size increased from 7.7 to 27.0 nm,the Co3O4 crystal size increased from 8.5 to 13.5 nm.Moreover,it was demonstrated that if the spinel crystal structure of Co3O4 was obtained at a calcination temperature as low as 150℃,the catalyst sample would have a high Co3O4 surface dispersion and an increase of surface active species,and thus exhibit a high activity for the oxidation of carbon monoxide. 展开更多
关键词 cobalt catalysts carrier porosity catalytic property calcination temperature oxidation of carbon monoxide
下载PDF
Influence of acid leaching and calcination on iron removal of coal kaolin 被引量:3
14
作者 Pei-wang Zhu Wei-qiang Zeng +3 位作者 Xiu-lin Xu Le-ming Cheng Xiao Jiang Zheng-lun Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第4期317-325,共9页
Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffracti... Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) demonstrated that 900&#176;C was the suitable temperature for the calcination. Leaching tests showed that hydrochloric acid was more effective for iron dissolution from raw coal kaolin (RCK), whereas oxalic acid was more effective on iron dissolution from calcined coal kaolin (CCK). The iron dissolution from CCK was 28.78wt%, which is far less effective than the 54.86wt% of RCK under their respective optimal conditions. Through analysis by using M?ssbauer spectroscopy, it is detected that nearly all of the structural ferrous ions in RCK were removed by hydrochloric acid. However, iron sites in CCK changed slightly by oxalic acid leaching because nearly all ferrous ions were transformed into ferric species after firing at 900&#176;C. It can be concluded that it is difficult to remove the structural ferric ions and ferric oxides evolved from the structural ferrous ions. Thus, iron removal by acids should be conducted prior to calcination. 展开更多
关键词 KAOLIN iron removal calcination acid leaching EXTRACTION MSssbauer spectroscopy
下载PDF
THERMAL DECOMPOSITION BEHAVIOUR OF NATURAL BASTNASITE CRYSTAL IN CALCINATION 被引量:7
15
作者 Xiang, Jun Zhang, Chengxiang +1 位作者 Tu, Ganfeng Ren, Chengzhi 《中国有色金属学会会刊:英文版》 EI CSCD 1994年第4期34-38,共5页
THERMALDECOMPOSITIONBEHAVIOUROFNATURALBASTNASITECRYSTALINCALCINATION¥Xiang,Jun;Zhang,Chengxiang;Tu,Ganfeng;R... THERMALDECOMPOSITIONBEHAVIOUROFNATURALBASTNASITECRYSTALINCALCINATION¥Xiang,Jun;Zhang,Chengxiang;Tu,Ganfeng;Ren,Chengzhi(Depar... 展开更多
关键词 bastnasite calcination THERMAL dynamic calculation
下载PDF
Effect of calcination temperature on microstructure and photocatalytic activity of BiOX(X=Cl,Br) 被引量:3
16
作者 Si-mei FU Gang-sen LI +4 位作者 Xing WEN Cai-mei FAN Jian-xin LIU Xiao-chao ZHANG Rui LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第3期765-773,共9页
A series of BiOX(X=Cl,Br) were prepared by simple hydrolysis and then calcined at various temperatures and they were characterized by XRD,Raman,SEM,DSC-TGA,BET and UV-Vis.The photocatalytic activity was evaluated by p... A series of BiOX(X=Cl,Br) were prepared by simple hydrolysis and then calcined at various temperatures and they were characterized by XRD,Raman,SEM,DSC-TGA,BET and UV-Vis.The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange(MO) solution under simulated solar light irradiation.The results show that the phase structure,crystallite size,morphology,specific surface area,porous structure,and the absorption band-edges are related to the calcination temperature.For BiOBr,it has completely transformed to Bi24O31Br10 at 600℃ and begins to transform to Bi2 O3 at 800℃.As for BiOCl,it begins to transform to Bi24O31Cl10 at 600℃ and completely transforms to Bi24O31Cl10 at 800℃.Finally,the photocatalytic activity of BiOCl decreases with the temperature increasing owing to decrease of the specific surface areas and pore size,while the photocatalytic activity of BiOBr increases in the first stage and then decreases,which is related to good crystallization and three-dimensional structure. 展开更多
关键词 calcination BiOX(X=Cl Br) photocatalyst MICROSTRUCTURE photocatalytic activity
下载PDF
Deoxygenation of methyl laurate to hydrocarbons on silica-supported Ni-Mo phosphides: Effect of calcination temperatures of precursor 被引量:2
17
作者 Zhengyi Pan Rijie Wang +2 位作者 Mingfeng Li Yang Chu Jixiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期77-86,共10页
SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by me... SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by means of ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM), CO chemisorption, H2 and NH3 temperature-programmed desorptions (H2-TPD and NH3-TPD). Their catalytic performances for the deoxygena- tion of methyl laurate were tested in a fixed-bed reactor. When the precursors were calcined at 400 and 500 ℃, respectively, NiMoP2 phase could be formed apart from Ni2P and MoP phases in the prepared C400 and C500 catalysts. However, when the precursors were calcined at 600, 700 and 800 ℃, respectively, only Ni2P and MoP phases could be detected in the prepared C600, C700 and C800 catalysts. Also, in C400, C500 and C600 catalysts, Mo atoms were found to be entered in the lattice of Ni2P phase, but the entering extent became less with the increase of calcination temperature. As the calcination temperature of the precursor increased, the interaction between Ni and Mo in the prepared catalysts decreased, and the phosphide crystallite size tended to increase, subsequently leading to the decrease in the surface metal site density and the acid amount. C600 catalyst showed the highest activity among the tested ones for the deoxygenation of methyl laurate. As the calcination temperature of the precursor increased, the selectivity to C12 hydrocarbons decreased while the selectivity to C11 hydrocarbons tended to increase. This can be mainly attributed to the decreased Ni-Mo interaction and the increased phosphide particle size. In sum, the structure and performance of Ni-Mo bimetallic phosphide catalyst can be tuned by the calcination temperature of precursor. 展开更多
关键词 metal phosphide calcination temperature methyl laurate hydrodeoxygenation DECARBONYLATION
下载PDF
Antibacterial Properties of V-doped Titanium-bearing Blast Furnace Slag Prepared at Different Calcination Temperatures 被引量:2
18
作者 王辉 杨合 +1 位作者 薛向欣 刘东 《过程工程学报》 CAS CSCD 北大核心 2010年第5期1025-1029,共5页
Perovskite-type V-doped titanium-bearing blast furnace slag (VTBBFS) photocatalyst was prepared by high-temperature solid phase method.The influence of calcination temperature on the photocatalytic and antibacterial p... Perovskite-type V-doped titanium-bearing blast furnace slag (VTBBFS) photocatalyst was prepared by high-temperature solid phase method.The influence of calcination temperature on the photocatalytic and antibacterial properties of VTBBFS was studied in details.Its composition and microstructure were evaluated by X-ray diffractometer,ultraviolet-visible absorption spectrometer,Fourier transform infrared spectrometer and scanning electron microscope.The antibacterial properties of VTBBFS to Candida albicans were investigated by flask oscillation method.The results showed that the optical absorption and antibacterial properties of VTBBFS were the best with 10%(ω) doping of vanadium,prepared at 800℃ for 2 h,and its sterilization rate was close to 100% to Candida albicans (ATCC10231).The minimum inhibitory and minimum bactericidal concentrations were 25 and 50 mg/mL.When the concentration was 0.2 μg/mL,the catalyst had the least toxic toxicity. 展开更多
关键词 V doping titanium-bearing blast furnace slag PHOTOCATALYST antibacterial activity calcination temperature
下载PDF
Extraction of potassium from K-feldspar via the CaCl_2 calcination route 被引量:9
19
作者 袁博 李春 +5 位作者 梁斌 吕莉 岳海荣 绳昊一 叶龙泼 谢和平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第9期1557-1564,共8页
The extraction of potassium from K-feldspar via a calcium chloride calcination route was studied with a focus on the effects of the calcination atmosphere, calcination temperature and time, mass ratio of CaCl2 to K-fe... The extraction of potassium from K-feldspar via a calcium chloride calcination route was studied with a focus on the effects of the calcination atmosphere, calcination temperature and time, mass ratio of CaCl2 to K-feldspar ore and particle size of the K-feldspar ore. The results demonstrated that a competing high-temperature hydrolysis reaction of calcium chloride with moisture in a damp atmosphere occurred concurrently with the conversion reaction of K-feldspar with CaCl2, thus reducing the amount of potassium extracted. The conversion reaction started at approximately 600 °C and accelerated with increasing temperature. When the temperature rose above 900 °C, the extraction of potassium gradually decreased due to the volatilization of the product, KCl.As much as approximately 41% of the potassium was volatilized in 40 min at 1100 °C. The mass ratio of CaCl2/K-feldspar ore significantly affected the extraction. At a mass ratio of 1.15 and 900 °C, the potassium extraction reached 91% in 40 min, while the extraction was reduced to only 22% at the theoretical mass ratio of 0.2. Optimal process conditions are as follows: ore particle size of 50–75 μm, tablet forming pressure of 3 MPa, dry nitrogen atmosphere, mass ratio of CaCl2/ore 1.15:1, calcination temperature of 900 °C, and calcination time of 40 min.The XRD analysis revealed that a complex phase transition of the product SiO2 was also accompanied by the conversion reaction of K-feldspar/CaCl2. The SiO2 product formed at the initial stage was in the quartz phase at 900 °C and was gradually transformed into cristobalite after 30 min. 展开更多
关键词 K-feldspar Calcium chloride Potassium extraction calcination
下载PDF
Effects of Calcination Temperature of Boron-Containing Magnesium Oxide Raw Materials on Properties of Magnesium Phosphate Cement as a Biomaterial 被引量:2
20
作者 董金美 余红发 +6 位作者 XIAO Xueying LI Ying WU Chengyou WEN Jing TAN Yongshan CHANG Chenggong ZHENG Weixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期671-676,共6页
A new magnesium phosphate bone cement (MPBC) was prepared as a byproduct of boroncontaining magnesium oxide (B-MgO) after extracting Li2CO3 from salt lakes. We analyzed the elementary composition of the B-MgO raw ... A new magnesium phosphate bone cement (MPBC) was prepared as a byproduct of boroncontaining magnesium oxide (B-MgO) after extracting Li2CO3 from salt lakes. We analyzed the elementary composition of the B-MgO raw materials and the effects of calcination temperature on the performance of MPBC. The phase composition and microstructure of the B-MgO raw materials and the hydration products (KMgPO4.6H2O) of MPBC were analyzed by X-ray diffraction and scanning electron microscopy. The results showed that ionic impurities and the levels of toxic elements were sufficiently low in B-MgO raw materials to meet the medical requirements for MgO (Chinese Pharmacopeia, 2O10 Edition) and for hydroxyapatite surgical implants (GB23101.1-2O08). The temperature of B-MgO calcination had a marked influence on the hydration and hardening of MPBC pastes. Increasing calcination temperature prolonged the time required for the MPBC slurry to set, significantly decreased the hydration temperature, and prolonged the time required to reach the highest hydration temperature. However, the compressive strength of hardened MPBC did not increase with higher calcination temperatures. In the 900-1 000 ~C temperature range, the hardened MPBC had a higher compressive strength. Imaging analysis suggested that the setting time and the highest hydration temperature of MPBC pastes were dependent on the size and crystal morphology of the B-MgO materials. The production and microstructure compactness of KMgPOa'6H2O, the main hydration product, determined the compressive strength. 展开更多
关键词 magnesium phosphate bone cement boron-containing magnesium oxide calcination temperature
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部