Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chl...Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chloride (CaCl_(2)),calcium acetate ((CH_(3)COO)_(2)Ca) and calcium nitrate (Ca(NO_(3))_(2)),were used to prepare the biotreatment solution to carry out the biomineralization tests in this paper.Two series of biomineralization tests in solution and sand column,respectively,were conducted.Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to determine the microscopic characteristics of the precipitated calcium carbonate (CaCO_(3)) crystals.The experimental results indicate that the biomineralization effect is the best for the CaCl2 case,followed by (CH_(3)COO)_(2)Ca,and worst for Ca(NO_(3))_(2) under the test conditions of this study (i.e.1 mol/L of calcium salt-urea).The mechanism for the effect of the calcium salt on the biomineralization of crude soybean urease mainly involves: (1) inhibition of urease activity,and (2) influence on the crystal size and morphology of CaCO_(3).Besides Ca^(2+) ,the anions in solution can inhibit the activity of crude soybean urease,and NO_(3)− has a stronger inhibitory effect on the urease activity compared with both CH_(3)COO^(−) and Cl^(−) .The co-inhibition of Ca^(2+) and NO_(3)− on the activity of urease is the key reason for the worst biomineralization of the Ca(NO_(3))_(2) case in this study.The difference in biomineralization between the CaCl_(2) and (CH_(3)COO)_(2) Ca cases is strongly correlated with the crystal morphology of the precipitated CaCO_(3).展开更多
The objective of this study was to determine the effect of supplying calcium salts of linseed oil (Ca-FA) rich in omega-3 (α-linolenic acid) on the production and chemical composition of milk and its nutraceutical va...The objective of this study was to determine the effect of supplying calcium salts of linseed oil (Ca-FA) rich in omega-3 (α-linolenic acid) on the production and chemical composition of milk and its nutraceutical value in dairy cows in early lactation. The trial lasted 12 weeks (2 weeks for adaptation to lipids and 10 weeks of data collection). A total of 36 Holstein dairy cows with 58.0 ± 17.0 days in milk (DIM), 594.1 ± 92.4 kg BW, 2.6 ± 1.5 parity and 38.9 ± 9.3 kg milk day<sup>-1</sup> were used in a randomized complete block design. The treatments were: 1) Omega-3 (O3): 5.2 kg DM day<span style="font-size:10px;white-space:normal;"><sup>-1</sup></span> of concentrate including 0.7 kg DM of Ca-FA + 13.5 kg DM <span style="white-space:normal;">day</span><span style="font-size:10px;white-space:normal;"><sup>-1</sup></span> of partial mixed ration (PMR) + 12 kg DM <span style="white-space:normal;">day</span><span style="font-size:10px;white-space:normal;"><sup>-1</sup></span> of alfalfa pasture (Medicago sativa) and 2) Control (C): diet similar to O3 but lipid supplementation was replaced by cracked corn grain so that the diets were isoenergetic. No treatment effect was detected (P > 0.05) for any milk production and composition variables, except for urea in milk that was slightly higher in O3 (P = 0.02). The treatment × week interaction was significant (P < 0.05) for fat yield and content, with differences (P < 0.01) only in the 3rd week of the data collection period in favor of group C (1.39 vs. 1.13 kg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span><span style="white-space:normal;">day</span><span style="font-size:10px;white-space:normal;"><sup>-1</sup></span> and 3.86% vs. 3.23% for fat yield and content, respectively). Total DMI and PMR were similar (P > 0.05) between treatments. Concentrate intake was higher (P < 0.01) in C compared with O3. Pasture DMI tended (P = 0.06) to be greater for cows that received the O3 treatment compared with C. Total metabolizable energy (ME) intake was similar (P = 0.44) between treatments. No treatment effect was detected (P > 0.05) in rumen environment parameters. Supplementation with Ca-FA reduced (P < 0.05) the hypercholesterolemic fraction of milk (C12:0, C14:0 and C16:0, -13.6%, -7.4% and -9.0%, respectively). The concentration of α-linolenic acid (C<sub>18:3n-3</sub>) increased (108%, P < 0.01) in O3 group compared with group C. The absence of negative effects of lipids on the fat content of milk and ruminal fermentation suggests that protection by saponification was effective. The supplementation with Ca-FA (0.85 <span style="white-space:normal;">kg</span><span style="white-space:normal;font-family:Verdana, Helvetica, Arial;background-color:#FFFFFF;">·</span><span style="white-space:normal;">day</span><span style="font-size:10px;white-space:normal;"><sup>-1</sup></span>) improved the healthy value of the milk.展开更多
Background: When usual calcium consumption patterns were analysed most people in the U.S. and Europe consume less than the recommended daily allowance. Supplements and fortified foods offer alternative and additional ...Background: When usual calcium consumption patterns were analysed most people in the U.S. and Europe consume less than the recommended daily allowance. Supplements and fortified foods offer alternative and additional sources of calcium to traditional food. Calcium carbonate is the most common supplement but it is less soluble in water and, therefore, not suitable for enrichment of beverages. New organic calcium salts have a better solubility but less is known about their bioavailability. In the present study, we assessed the solubility and bioavailability of the new organic calcium salts, calcium lactate citrate and calcium lactate malate, in comparison to the traditional supplements, calcium carbonate and calcium gluconate. Design: Randomized, single-blind, four way cross-over study comparing single doses of 500 mg calcium in the form of four different calcium-salts. Subjects were advised to consume 25 μg vitamin D3 daily two weeks prior to the start of the study and during the whole study period. Subjects: 20 healthy young men, Methods: Blood samples were drawn immediately before and 2, 4, 6, 8, 12 and 24 h after ingestion of the calcium preparation. Concentration of total calcium and intact parathyroid hormone were measured in the serum. Urine was collected at baseline and during the intervals 0-3, 3-6, 9-15 and 15-24 h and excretion of calcium, sodium and creatinine was examined. Results: The tested new salts were easily water soluble, significantly better than calcium gluconate. Calcium carbonate is almost insoluble. The bioavailability of the four different calcium salts was found to be almost identical. The maximum total serum calcium increased by 7.6 % two hours after ingestion calcium lactate citrate, by 7.4 % after calcium lactate malate, by 5.5 % after calcium carbonate, and by 5.8 % after calcium gluconate. Intact parathyroid hormone concentration showed the expected depression for calcium lactate citrate, calcium lactate malate and calcium carbonate, whereas the serum level was significantly higher after ingestion of calcium gluconate. Conclusion: Given an almost equivalent bioavailability of the four tested calcium salts, we conclude that the new salts calcium lactate citrate and calcium lactate malate are well suited for fortification of beverages and thus to increase the average daily calcium intake.展开更多
The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the ...The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the heat transfer rate. In order to improve the low heat transfer rate of the ammoniation and the deammoniation of CaCl2, the influence of a heat transfer media (Ti: titanium) on the heat transfer rate of the solid ammoniated salt (CaCl2.mNH3) was studied and tested experimentally. The performance tests were carried out under the conditions of various weight ratios of Ti. No decrease of the activation of chemical reaction and no corrosion of experimental apparatus were observed on the repeated runs (≥30 times each). The heat transfer rate of ammoniated salt was greatly improved by adding Ti under the constant pressure (0.5 MPa). The reaction time required for the ammoniation of CaCl2 mixed with Ti was approximately 16% - 54% shorter than that of CaCl2 alone, and the reaction time required for the deammoniation was also approximately 19% - 59% shorter than that of CaCl2 alone.展开更多
Objective Large-conductance calcium-activated potassium(BKCa)channel modulates vascular smooth muscle tone.In the present study,we tested the hypothesis that salt,one of the factors which significantly influence blood...Objective Large-conductance calcium-activated potassium(BKCa)channel modulates vascular smooth muscle tone.In the present study,we tested the hypothesis that salt,one of the factors which significantly influence blood pressure(BP),can regulate BKCa activity and then elevate blood pressure.Methods Male Sprague-Dawley rats aged 6 weeks were randomized into high salt diet group(HS)and control group,fed with high salt diet(containing 5% NaCl)and standard rat chow(containing 0.4% NaCl)respectively for 16 weeks.Tail systolic blood pressure(SBP),body weight(BW)and 24-hour urinary output were tested every 4 weeks.Content of urinary Na+ was detected using flame spectrophotometrical method.At the end of 16 weeks,all the rats were killed,the mesenteric arteries were obtained,and single mesenteric smooth muscle cells were isolated at once.The resting membrane potential(Em),the total potassium currents and the currents after perfusion with TEA solution of the cells were all recorded by whole cell patch clamp.The transcriptions of BKCa channel α and β1 subunits in mesenteric arterial vascular smooth muscle cells(VSMC)of each group were calculated by real-time RT-PCR.Results There was no difference in SBP and BW at each stage between control group and HS group;the urinary Na+ level in HS animals was elevated significantly after 4 weeks.The negative values of Em in HS group VSMCs were reduced compared with those in the control group.Transcriptions of β1 subunit of BKCa channels were decreased in HS group,but α subunit transcriptions did not differ between the two groups.Whole cell potassium currents did not differ between HS and control groups,but BKCa currents of HS group VSMCs were lower than those of control group ones.Conclusion Even without elevating SBP,salt-loading can still modulate the expression and activity of BKCa channel in the mesenteric arterial VSMC and elevate vascular tone.展开更多
特殊螺纹接头是高温高压井油套管柱连接的重要部件,管内流体压力、流速的变化诱发管柱振动,引起特殊螺纹接头密封面发生微滑,表现为力与位移的刚度软化与滞回等非线性特征,进而导致接头密封性能下降。为查明密封面的微滑机制,基于离散I...特殊螺纹接头是高温高压井油套管柱连接的重要部件,管内流体压力、流速的变化诱发管柱振动,引起特殊螺纹接头密封面发生微滑,表现为力与位移的刚度软化与滞回等非线性特征,进而导致接头密封性能下降。为查明密封面的微滑机制,基于离散Iwan模型本构关系,建立某锥面-锥面Φ88.9 mm×6.45 mm P110特殊螺纹接头有限元分析模型,得到不同循环位移载荷下密封面处的力-位移滞回曲线,通过滞回曲线离散化分析,识别出离散Iwan模型的4组参数;构建该特殊螺纹接头等效Iwan模型,分析密封面间的微滑状态;对比分析两种模型滞回曲线的相似度,验证等效Iwan模型的准确性。结果表明:构建的特殊螺纹接头等效Iwan模型与有限元分析模型的综合相似度较高,滞回曲线面积重合度大于92%,位置误差小于2%;利用特殊螺纹接头等效Iwan模型得到的滞回曲线,能够准确描述密封面间黏着、滑移、宏观滑移之间的转化过程,从而为特殊螺纹接头滞回曲线分析提供一种新方法。展开更多
基金the financial support by the National Natural Science Foundation of China(NSFC)(Grant Nos.52178319 and 52108307)the Natural Science Foundation of Fujian Province,China(Grant No.2022J05127).
文摘Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chloride (CaCl_(2)),calcium acetate ((CH_(3)COO)_(2)Ca) and calcium nitrate (Ca(NO_(3))_(2)),were used to prepare the biotreatment solution to carry out the biomineralization tests in this paper.Two series of biomineralization tests in solution and sand column,respectively,were conducted.Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to determine the microscopic characteristics of the precipitated calcium carbonate (CaCO_(3)) crystals.The experimental results indicate that the biomineralization effect is the best for the CaCl2 case,followed by (CH_(3)COO)_(2)Ca,and worst for Ca(NO_(3))_(2) under the test conditions of this study (i.e.1 mol/L of calcium salt-urea).The mechanism for the effect of the calcium salt on the biomineralization of crude soybean urease mainly involves: (1) inhibition of urease activity,and (2) influence on the crystal size and morphology of CaCO_(3).Besides Ca^(2+) ,the anions in solution can inhibit the activity of crude soybean urease,and NO_(3)− has a stronger inhibitory effect on the urease activity compared with both CH_(3)COO^(−) and Cl^(−) .The co-inhibition of Ca^(2+) and NO_(3)− on the activity of urease is the key reason for the worst biomineralization of the Ca(NO_(3))_(2) case in this study.The difference in biomineralization between the CaCl_(2) and (CH_(3)COO)_(2) Ca cases is strongly correlated with the crystal morphology of the precipitated CaCO_(3).
文摘The objective of this study was to determine the effect of supplying calcium salts of linseed oil (Ca-FA) rich in omega-3 (α-linolenic acid) on the production and chemical composition of milk and its nutraceutical value in dairy cows in early lactation. The trial lasted 12 weeks (2 weeks for adaptation to lipids and 10 weeks of data collection). A total of 36 Holstein dairy cows with 58.0 ± 17.0 days in milk (DIM), 594.1 ± 92.4 kg BW, 2.6 ± 1.5 parity and 38.9 ± 9.3 kg milk day<sup>-1</sup> were used in a randomized complete block design. The treatments were: 1) Omega-3 (O3): 5.2 kg DM day<span style="font-size:10px;white-space:normal;"><sup>-1</sup></span> of concentrate including 0.7 kg DM of Ca-FA + 13.5 kg DM <span style="white-space:normal;">day</span><span style="font-size:10px;white-space:normal;"><sup>-1</sup></span> of partial mixed ration (PMR) + 12 kg DM <span style="white-space:normal;">day</span><span style="font-size:10px;white-space:normal;"><sup>-1</sup></span> of alfalfa pasture (Medicago sativa) and 2) Control (C): diet similar to O3 but lipid supplementation was replaced by cracked corn grain so that the diets were isoenergetic. No treatment effect was detected (P > 0.05) for any milk production and composition variables, except for urea in milk that was slightly higher in O3 (P = 0.02). The treatment × week interaction was significant (P < 0.05) for fat yield and content, with differences (P < 0.01) only in the 3rd week of the data collection period in favor of group C (1.39 vs. 1.13 kg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span><span style="white-space:normal;">day</span><span style="font-size:10px;white-space:normal;"><sup>-1</sup></span> and 3.86% vs. 3.23% for fat yield and content, respectively). Total DMI and PMR were similar (P > 0.05) between treatments. Concentrate intake was higher (P < 0.01) in C compared with O3. Pasture DMI tended (P = 0.06) to be greater for cows that received the O3 treatment compared with C. Total metabolizable energy (ME) intake was similar (P = 0.44) between treatments. No treatment effect was detected (P > 0.05) in rumen environment parameters. Supplementation with Ca-FA reduced (P < 0.05) the hypercholesterolemic fraction of milk (C12:0, C14:0 and C16:0, -13.6%, -7.4% and -9.0%, respectively). The concentration of α-linolenic acid (C<sub>18:3n-3</sub>) increased (108%, P < 0.01) in O3 group compared with group C. The absence of negative effects of lipids on the fat content of milk and ruminal fermentation suggests that protection by saponification was effective. The supplementation with Ca-FA (0.85 <span style="white-space:normal;">kg</span><span style="white-space:normal;font-family:Verdana, Helvetica, Arial;background-color:#FFFFFF;">·</span><span style="white-space:normal;">day</span><span style="font-size:10px;white-space:normal;"><sup>-1</sup></span>) improved the healthy value of the milk.
文摘Background: When usual calcium consumption patterns were analysed most people in the U.S. and Europe consume less than the recommended daily allowance. Supplements and fortified foods offer alternative and additional sources of calcium to traditional food. Calcium carbonate is the most common supplement but it is less soluble in water and, therefore, not suitable for enrichment of beverages. New organic calcium salts have a better solubility but less is known about their bioavailability. In the present study, we assessed the solubility and bioavailability of the new organic calcium salts, calcium lactate citrate and calcium lactate malate, in comparison to the traditional supplements, calcium carbonate and calcium gluconate. Design: Randomized, single-blind, four way cross-over study comparing single doses of 500 mg calcium in the form of four different calcium-salts. Subjects were advised to consume 25 μg vitamin D3 daily two weeks prior to the start of the study and during the whole study period. Subjects: 20 healthy young men, Methods: Blood samples were drawn immediately before and 2, 4, 6, 8, 12 and 24 h after ingestion of the calcium preparation. Concentration of total calcium and intact parathyroid hormone were measured in the serum. Urine was collected at baseline and during the intervals 0-3, 3-6, 9-15 and 15-24 h and excretion of calcium, sodium and creatinine was examined. Results: The tested new salts were easily water soluble, significantly better than calcium gluconate. Calcium carbonate is almost insoluble. The bioavailability of the four different calcium salts was found to be almost identical. The maximum total serum calcium increased by 7.6 % two hours after ingestion calcium lactate citrate, by 7.4 % after calcium lactate malate, by 5.5 % after calcium carbonate, and by 5.8 % after calcium gluconate. Intact parathyroid hormone concentration showed the expected depression for calcium lactate citrate, calcium lactate malate and calcium carbonate, whereas the serum level was significantly higher after ingestion of calcium gluconate. Conclusion: Given an almost equivalent bioavailability of the four tested calcium salts, we conclude that the new salts calcium lactate citrate and calcium lactate malate are well suited for fortification of beverages and thus to increase the average daily calcium intake.
文摘The exothermic chemical reaction of CaCl2 (calcium chloride) with NH3 (ammonia) can be utilized as an energy storage system. Since this reaction is a typical gas-solid reaction, the reaction rate is controlled by the heat transfer rate. In order to improve the low heat transfer rate of the ammoniation and the deammoniation of CaCl2, the influence of a heat transfer media (Ti: titanium) on the heat transfer rate of the solid ammoniated salt (CaCl2.mNH3) was studied and tested experimentally. The performance tests were carried out under the conditions of various weight ratios of Ti. No decrease of the activation of chemical reaction and no corrosion of experimental apparatus were observed on the repeated runs (≥30 times each). The heat transfer rate of ammoniated salt was greatly improved by adding Ti under the constant pressure (0.5 MPa). The reaction time required for the ammoniation of CaCl2 mixed with Ti was approximately 16% - 54% shorter than that of CaCl2 alone, and the reaction time required for the deammoniation was also approximately 19% - 59% shorter than that of CaCl2 alone.
文摘Objective Large-conductance calcium-activated potassium(BKCa)channel modulates vascular smooth muscle tone.In the present study,we tested the hypothesis that salt,one of the factors which significantly influence blood pressure(BP),can regulate BKCa activity and then elevate blood pressure.Methods Male Sprague-Dawley rats aged 6 weeks were randomized into high salt diet group(HS)and control group,fed with high salt diet(containing 5% NaCl)and standard rat chow(containing 0.4% NaCl)respectively for 16 weeks.Tail systolic blood pressure(SBP),body weight(BW)and 24-hour urinary output were tested every 4 weeks.Content of urinary Na+ was detected using flame spectrophotometrical method.At the end of 16 weeks,all the rats were killed,the mesenteric arteries were obtained,and single mesenteric smooth muscle cells were isolated at once.The resting membrane potential(Em),the total potassium currents and the currents after perfusion with TEA solution of the cells were all recorded by whole cell patch clamp.The transcriptions of BKCa channel α and β1 subunits in mesenteric arterial vascular smooth muscle cells(VSMC)of each group were calculated by real-time RT-PCR.Results There was no difference in SBP and BW at each stage between control group and HS group;the urinary Na+ level in HS animals was elevated significantly after 4 weeks.The negative values of Em in HS group VSMCs were reduced compared with those in the control group.Transcriptions of β1 subunit of BKCa channels were decreased in HS group,but α subunit transcriptions did not differ between the two groups.Whole cell potassium currents did not differ between HS and control groups,but BKCa currents of HS group VSMCs were lower than those of control group ones.Conclusion Even without elevating SBP,salt-loading can still modulate the expression and activity of BKCa channel in the mesenteric arterial VSMC and elevate vascular tone.
文摘特殊螺纹接头是高温高压井油套管柱连接的重要部件,管内流体压力、流速的变化诱发管柱振动,引起特殊螺纹接头密封面发生微滑,表现为力与位移的刚度软化与滞回等非线性特征,进而导致接头密封性能下降。为查明密封面的微滑机制,基于离散Iwan模型本构关系,建立某锥面-锥面Φ88.9 mm×6.45 mm P110特殊螺纹接头有限元分析模型,得到不同循环位移载荷下密封面处的力-位移滞回曲线,通过滞回曲线离散化分析,识别出离散Iwan模型的4组参数;构建该特殊螺纹接头等效Iwan模型,分析密封面间的微滑状态;对比分析两种模型滞回曲线的相似度,验证等效Iwan模型的准确性。结果表明:构建的特殊螺纹接头等效Iwan模型与有限元分析模型的综合相似度较高,滞回曲线面积重合度大于92%,位置误差小于2%;利用特殊螺纹接头等效Iwan模型得到的滞回曲线,能够准确描述密封面间黏着、滑移、宏观滑移之间的转化过程,从而为特殊螺纹接头滞回曲线分析提供一种新方法。