The N-terminal EF-hand calcium-binding proteins 1–3(NECAB1–3) constitute a family of predominantly neuronal proteins characterized by the presence of at least one EF-hand calcium-binding domain and a functionally le...The N-terminal EF-hand calcium-binding proteins 1–3(NECAB1–3) constitute a family of predominantly neuronal proteins characterized by the presence of at least one EF-hand calcium-binding domain and a functionally less well characterized C-terminal antibiotic biosynthesis monooxygenase domain. All three family members were initially discovered due to their interactions with other proteins. NECAB1 associates with synaptotagmin-1, a critical neuronal protein involved in membrane trafficking and synaptic vesicle exocytosis. NECAB2 interacts with predominantly striatal G-protein-coupled receptors, while NECAB3 partners with amyloid-β A4 precursor protein-binding family A members 2 and 3, key regulators of amyloid-β production. This demonstrates the capacity of the family for interactions with various classes of proteins. NECAB proteins exhibit distinct subcellular localizations: NECAB1 is found in the nucleus and cytosol, NECAB2 resides in endosomes and the plasma membrane, and NECAB3 is present in the endoplasmic reticulum and Golgi apparatus. The antibiotic biosynthesis monooxygenase domain, an evolutionarily ancient component, is akin to atypical heme oxygenases in prokaryotes but is not wellcharacterized in vertebrates. Prokaryotic antibiotic biosynthesis monooxygenase domains typically form dimers, suggesting that calcium-mediated conformational changes in NECAB proteins may induce antibiotic biosynthesis monooxygenase domain dimerization, potentially activating some enzymatic properties. However, the substrate for this enzymatic activity remains uncertain. Alternatively, calcium-mediated conformational changes might influence protein interactions or the subcellular localization of NECAB proteins by controlling the availability of protein–protein interaction domains situated between the EF hands and the antibiotic biosynthesis monooxygenase domain. This review summarizes what is known about genomic organization, tissue expression, intracellular localization, interaction partners, and the physiological and pathophysiological role of the NECAB family.展开更多
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central n...The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.展开更多
By using a downward penetration testing device, a large number of experiments were made to investigate the effects of surfactants (sodium succinate, sodium dodecyl sulfonate and dodecyl benzene sulfonic acid sodium sa...By using a downward penetration testing device, a large number of experiments were made to investigate the effects of surfactants (sodium succinate, sodium dodecyl sulfonate and dodecyl benzene sulfonic acid sodium salt) on the penetration ability of the calcium chloride and water glass solutions in four dust samples. The experimental results showed that the surfactants can enhance the penetration ability and decrease the surface tension of the calcium chloride and water glass solutions in great extent. After adding the surfactants in 0.2—0.6 wt.% to the solutions of calcium chloride and water glass in 5—25 wt.% respectively, the largest percent of penetration ability increases to 28% more. Among the three surfactants, the size of their effects on the penetration ability of calcium chloride and water solutions in the dust samples is dodecyl benzene sulfonic acid sodium salt, sodium dodecyl sulfonate and sodium succinate.The achieved conclusions are great significant for calcium chloride and water glass to be applied in the field of soil stabilization and raising dust control.展开更多
One of the bottlenecks for bioproduction of butyric acid as bulk chemical is the difficulty in separating butyric acid from the fermentation broth,compared with the petroleum-based chemical synthesis method.In the pre...One of the bottlenecks for bioproduction of butyric acid as bulk chemical is the difficulty in separating butyric acid from the fermentation broth,compared with the petroleum-based chemical synthesis method.In the present work,a novel separation methodology was developed based on an aqueous two-phase system with inor-ganic salts.Calcium chloride was screened out for effective separation of butyric acid from butyric acid-water-salt systems.Within appropriate concentration range of butyric acid and salt,butyric acid was enriched in the upper phase and most of calcium ions remained in the lower phase.This"salting out"effect is very efficient to separate butyric acid from the simulated butyrate fermentation broth,which consists of butyric acid and acetic acid with concentration ratio of 4︰1,so that the final ratio of butyric acid/acetic acid in the upper phase is improved to 9.87. The aqueous two-phase system was used to separate butyric acid from the actual fermentation broth with satisfac-tory result.展开更多
A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly p...A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaC12 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were inves- tigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaC12 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching tempera- ture of 80℃, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.展开更多
Vapor-liquid equilibria for water+hydrochloric acid+magnesium chloride and water+hydrochloric acid+calcium chloride systems at atmospheric pressure were measured using a Othmer-type equilibrium still. The experimental...Vapor-liquid equilibria for water+hydrochloric acid+magnesium chloride and water+hydrochloric acid+calcium chloride systems at atmospheric pressure were measured using a Othmer-type equilibrium still. The experimental data are correlated using a modified Meissner’s method. Satisfactory agreements are obtained between the experimental and the calculated results.展开更多
Objective A calcium-activated chloride current (ICl(Ca)) has been observed in medium-sized sensory neurons of the dorsal root ganglion (DRG). Axotomy of the sciatic nerve induces a similar current in the majorit...Objective A calcium-activated chloride current (ICl(Ca)) has been observed in medium-sized sensory neurons of the dorsal root ganglion (DRG). Axotomy of the sciatic nerve induces a similar current in the majority of medium and large diameter neurons. Our aim is to identify the molecule(s) underlying this current. Methods Using conventional and quantitative RT-PCR, we examined the expression in DRG of members of three families of genes, which have been shown to have latch) current inducing properties. Results We showed the detection of transcripts representing several members of these families, i.e. chloride channel calciumactivated (CLCA), Bestrophin and Tweety gene families in adult DRG, in the normal state and 3 d after sciatic nerve section, a model for peripheral nerve injury. Conclusion Our analysis revealed that that mBestl and Tweety2 appear as the best candidates to play a role in the injury-induced Icl(Ca) in DRG neurons.展开更多
The CaCl2 solubility in 2-methyl-butanol acetate and the vapor pressure of 2-methyl-butanol acetate containing CaCl2 were measured in the range of 90-135°C and from very low salt concentration to saturation.The e...The CaCl2 solubility in 2-methyl-butanol acetate and the vapor pressure of 2-methyl-butanol acetate containing CaCl2 were measured in the range of 90-135°C and from very low salt concentration to saturation.The experimental data were correlated with two equations,a modified Antoine equation with the dissolved salt taken into account and a nonrandom two liquid-electrolyte(e-NRTL)model.Both models are in good agreement with the experimental data.This study provides essential physical data for further investigation of vapor-liquid equilibrium system containing salt.展开更多
Corundum spinel castable was prepared using tabular corundum as aggregates,white fused corundum powder,spinel powder and alumina powder as the matrix,pure calcium aluminate cement as a binder,and extra adding calcium ...Corundum spinel castable was prepared using tabular corundum as aggregates,white fused corundum powder,spinel powder and alumina powder as the matrix,pure calcium aluminate cement as a binder,and extra adding calcium chloride(0,1%,2%,and 3%,by mass).The effects of the CaCl2 addition on the cold physical properties,the hot strength,the thermal shock resistance and the microstructure of the castable were studied.The results show that,for the corundum spinel castable fired at 1550℃,with the increase of the CaCl2 addition from 0 to 3%,the cold strengthes first increase,then decrease,the apparent porosity increases,the volume density decreases,and the linear change rate first decreases and then increases,while the overall change is not significant;however,the hot modulus of rupture and the thermal shock resistance are obviously improved.This is mainly due to that,CaCl2 is evenly distributed in the castable in the form of solution,and reacts with Al2O3 to form small flake CA6 crystals,which evenly distributed in the sample matrix strengthening and toughening the material.展开更多
The chemism of the chlorination of copper (I) sulphide by calcium chloride in the presence of oxygen has been determined based on the thermodynamic analysis in the Cu2S-CaCl2-O2 system as well as characterization of...The chemism of the chlorination of copper (I) sulphide by calcium chloride in the presence of oxygen has been determined based on the thermodynamic analysis in the Cu2S-CaCl2-O2 system as well as characterization of used raw materials and obtained products. The influence of temperature (from 473 to 773 K), time (from 2 to 120 min), oxygen flow (from 20 to 100 L/h) and calcium chloride quantity (from 5 to 40%) on the chlorination degree has been investigated. Kinetic analysis and the activation energy values of 20.89 kJ/mol showed that the chlorination of copper (I) sulphide by calcium chloride in the presence of oxygen is diffusion controlled.展开更多
Gypsum crystallization along with the simultaneous regeneration of KCl was investigated by the reaction of CaCl2 solution with K2SO4.Well developed sheet structure gypsum crystals were produced when K2SO4 solution was...Gypsum crystallization along with the simultaneous regeneration of KCl was investigated by the reaction of CaCl2 solution with K2SO4.Well developed sheet structure gypsum crystals were produced when K2SO4 solution was added into the CaCl2 solution by slow titration or in multiple stages over 2-8 h followed by 2 h equilibration.In order to regenerate KCl solution as concentrated as possible,K2SO4 solid was added into the given CaCl2 solution instead of K2SO4 solution,obtaining gypsum crystals with almost the same quality by multistage addition with[SO4 2-]/[Ca 2+]molar ratio no larger than 0.8.However,impurity of K2SO4·CaSO4·H2O was detected by XRD and was further confirmed by SEM-EDS in the produced crystals when the[SO4 2-]/[Ca 2+] ratio increased to 1.1.It is proved that appearance of the double sulfate is attributed to the relatively high concentration of K2SO4.So,it is essential to properly control the[SO4 2-]/[Ca 2+]ratio and make sure[Ca 2+ ]in excess to suppress the solubility of CaSO4 even at the expense of low calcium removal rate.展开更多
The aim of this study was to investigate the effect of storage conditions on the sensory quality, colour and texture of fresh-cut cabbage during the addition of ascorbic acid, citric acid and calcium chloride. Ascorbi...The aim of this study was to investigate the effect of storage conditions on the sensory quality, colour and texture of fresh-cut cabbage during the addition of ascorbic acid, citric acid and calcium chloride. Ascorbic acid maintained the overall quality for 14 days at 0℃ and 7 days at 5℃;no difference, however, was observed regarding browning of cut surface compared to the control sample at both storage temperatures. Calcium chloride maintained the overall quality and cut surface browning for 14 days at both storage temperatures. It was also found that citric acid 1% can be used for minimally processed cabbage. Soaking with citric acid helped retain the color and increased the overall acceptance and organoleptic quality of fresh cut cabbage;it reduced browning of the cut surface and protected against formation of black specks. Citric acid treatment combined with low temperature storage (0℃) prolonged the shelf life of minimally processed cabbage for 22 days, time sufficient for acceptable marketing of the product. The lightness of minimally processed cabbage decreased linearly from 70.94 ± 6 to 63.8 ± 8.5 - 61.3 ± 8 units for the chemical treatments during 22 days of storage at 0℃. Hue angle values during storage time were also significantly influenced by chemical treatments mainly at 0℃.展开更多
A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during t...A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during the period of 5th March to 20th April, 2017. The experiment was laid to fit a completely randomized design (CRD) with seven treatments [Reference soil (T0), Cow dung (T1), Rice husk (T2), Gypsum (T3), Calcium chloride (T4), Cow dung + Rice husk (T5) and Gypsum + Calcium chloride (T6)] each having three replications for this experiment. After incubation (45 days), the laboratory investigation was carried out in the Soil, Water and Environment Discipline, Khulna University, Khulna, Bangladesh. Results indicate that the individual or combined effect of gypsum (T3) was more effective in changing EC and SAR. Gypsum application in combination with calcium chloride (T6) improved the soil chemical properties by reducing the EC. Among the treatment, calcium chloride (T4) had a remarkable effect in reducing sodium adsorption ratio and gypsum had a remarkable effect in reducing pH. Cow dung (T1), rice husk (T2), combination of cow dung and rice husk (T5) were less effective to reduce EC, pH and SAR. It’s measured for soils of different soil amendments varied significantly展开更多
Salt stress is one of the most serious abiotic stresses limiting plant growth and development.Calcium as an essential nutrient element and important signaling molecule plays an important role in ameliorating the adver...Salt stress is one of the most serious abiotic stresses limiting plant growth and development.Calcium as an essential nutrient element and important signaling molecule plays an important role in ameliorating the adverse effect of salinity on plants.This study aimed to investigate the impact of exogenous calcium on improving salt tolerance in Tartary buckwheat cultivars,cv.Xinong9920(salt-tolerant)and cv.Xinong9909(salt-sensitive).Four-week-old Tartary buckwheat seedlings under 100 mM NaCl stress were treated with and without exogenous calcium chloride(CaCl_(2)),Ca^(2+)chelator ethylene glycol tetraacetic acid(EGTA)and Ca^(2+)-channel blocker lanthanum chloride(LaCl_(3))for 10 days.Then,some important physiological and biochemical indexes were determined.The results showed that salt stress significantly reduced seedling growth,decreased photosynthetic pigments,inhibited antioxidants and antioxidant enzyme activities.However,it increased the reactive oxygen species(ROS)levels in the two Tartary buckwheat cultivars.Exogenous 10 mM CaCl_(2)application on salt-stressed Tartary buckwheat seedlings obviously mitigated the negative effects of NaCl stress and partially restored seedlings growth.Ca^(2+)-treated salt-stressed seedlings diplayed a suppressed accumulation of ROS,increased the contents of total chlorophyll,soluble protein,proline and antioxidants,and elevated the activities of antioxidant enzymes compared with salt stress alone.On the contrary,the addition of 0.5 mM LaCl_(3)and 5 mM EGTA on salt-stressed Tartary buckwheat seedlings exhibited the opposite effects to those with CaCl_(2)treatment.These results indicate that exogenous Ca^(2+)can enhance salt stress tolerance and Ca^(2+)supplementation may be an effective practice to cultivate Tartary buckwheat in saline soils.展开更多
To investigate the biobeical effects of terbium (Tb), male mice were intravenously ad ministered with TbCl3 at 10, 25, or 50 mg Tb/kg. Time-course and dose-related changes in organ distributions of Tb were determined ...To investigate the biobeical effects of terbium (Tb), male mice were intravenously ad ministered with TbCl3 at 10, 25, or 50 mg Tb/kg. Time-course and dose-related changes in organ distributions of Tb were determined . More than 95 % of the Tb in blood was in plas ma, and the concentrations decreased rapidly. Contrary to normal pharmacokinetics, Tb con centrations in plasma were higher in the 10 mg/kg group than in the 50 mg/kg group. The concentrations after injection of 25 mg/kg were between 10 and 50 mg/kg injections. Tb was incorporated mainly in liver, lung, and spleen. In all groups more than 80% of Tb adminis tered were found in these three organs. Disappearance of Tb in these organs was very slow.Tb was also found in kidney, heart and other organs. Coincidentally, it was found that the Ca concentration was increased in organs in which Tb was incorporated. After administration of Tb (50 mg/kg) the Ca concentration, compared to the controls, was 70-fold in spleen, 20-fold in lung, and 6-fold in liver. There were highly positive correlations between Tb and Ca concentrations in organs. Excretion of Tb in urine was 0. 15 ~ 0. 3 % and that in feces was 1.7~12. 5 % for up to 7 days. These results indicate that liver, lung, and spleen are the main target organs of Tb administered intravenously, and that the increase in Ca concentrations is one of the important biological effects of Tb in target organs展开更多
AIM: To evaluate the protective effect of 2′-p-hydroxy benzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HUH-7 cel Is.METHODS: CCI4 is a well characterized hep...AIM: To evaluate the protective effect of 2′-p-hydroxy benzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HUH-7 cel Is.METHODS: CCI4 is a well characterized hepatotoxin, and inducer of cytochrome P450 2E1 (CYP2E1)-mediated oxidative stress. In addition, lipid peroxidation and accumulation of intracellular calcium are important steps in the pathway involved in CCl4 toxicity. Liver cells (HUH-7) were treated with CCI4, and the mechanism of the cytoprotective effect of NG was assessed. Silymarin, a known hepatoprotective drug, was used as control. RESULTS: NG protected HUH-7 cells against CCl4 toxicity and loss of viability without modulating CYP2E1 activity. Prevention of CCl4 toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species (ROS), a decrease in lipid peroxidation and accumulation of intracellular Ca^2+ levels and maintenance of intracellular glutathione homeostasis. Decreased mitochondrial membrane potential (MMP), induction of caspases mediated DNA fragmentation and cell cycle arrest, as a result of CCl4 treatment, were also blocked by NG. The protection afforded by NG seemed to be mediated by activation of cyclic adenosine monophosphate (cAMP) synthesis and inhibition of phospholipases (cPLA2). CONCLUSION: NG exerts a protective effect on CYP2E1-dependent CCl4 toxicity via inhibition of lipid peroxidation, followed by an improved intracellular calcium homeostasis and inhibition of Ca^2+-dependent proteases.展开更多
Fermented chile pepper mash (Capsicum annuum cv. Mesilla Cayenne) is a major industrial food product in New Mexico. The fermentation of chile pepper mash depends on temperature, acidity, salt concentration, dissolve...Fermented chile pepper mash (Capsicum annuum cv. Mesilla Cayenne) is a major industrial food product in New Mexico. The fermentation of chile pepper mash depends on temperature, acidity, salt concentration, dissolved air, available carbohydrates and enzymes. The objective of this study was to evaluate the effects of the addition of calcium chloride (CaCI2) on the microbial characteristics of the pepper mash fermentation. Nine five gallon buckets were prepared with pepper that had been washed and ground by the manufacturer, each with 15% sodium chloride added. The buckets were allotted randomly to 1 of 3 treatments. The treatments included no CaCl2, 0.2% CaCl2 and 0.4% CaCl2 added to the pepper mash. Samples were stored at room temperature and sampled over a 3 months period to examine changes in the microflora. Chile mash samples were serially diluted in butterfield's phosphate buffer for microbial enumeration. Aerobic plate counts were conducted by pour plating with an overlay. Petrifilms were used for E. coil/coliform counts and Enterobacteriaceae. Yeasts and molds were surface plated on Rose Bengal Chloramphenicol agar while streptococci and lactobacilli were plated onto M17 and acidified MRS respectively. Aerobic plate counts, coliforms, E. coli, Enterobacteriaceae, yeast, mold, lactobacilli, and streptococci were not affected by CaCl2 level. The addition of 0.4% CaCl2 was found to have no effect on the chile pepper mash fermentation.展开更多
Objective To explore the toxic effects of mercuric chloride (HgCl 2) on vascular smooth muscle as well as its relationship to calcium antagonist. Methods By using isolated vascular tension methods, we studied the...Objective To explore the toxic effects of mercuric chloride (HgCl 2) on vascular smooth muscle as well as its relationship to calcium antagonist. Methods By using isolated vascular tension methods, we studied the effect of HgCl 2 on isolated rabbit aortic rings. Results HgCl 2 (1-100 μmol·L -1) caused a concentration-dependent contraction of rabbit aortic rings, which did not change with phentolamin or without endothelium. In KH solution with Ca 2+ , the maximum contraction amplitude reduced by(61.2±3.3)%. Nifedipine produced a concentration-dependent decrease of the maximum contraction amplitude. Conclusion Calcium antagonist has protective effects on vascular smooth muscle against damage induced by HgCl 2.展开更多
Climate change is expected to unleash severe and frequent heat waves in future, adversely affecting crop productivity. The aim of this study was to examine the effect of two separate episodes of heat stress, mimicking...Climate change is expected to unleash severe and frequent heat waves in future, adversely affecting crop productivity. The aim of this study was to examine the effect of two separate episodes of heat stress, mimicking heat wave conditions on the physiology of four Indian bread wheat cultivars and to study the ameliorating effects of epibrassinolide (BR) and calcium chloride on the recovery of these cultivars. The two thermo-tolerant cultivars C306 and K7903 suffered less inhibition of photosystem II efficiency as compared to the two thermo-susceptible cultivars HD2329 and PBW343. Application of BR and calcium chloride resulted in faster recovery in all the four cultivars. Measurement of the minimum fluorescence (Fo) versus temperature curves revealed a higher inflection temperature of Fo (Ti) for the two tolerant cultivars as compared to the susceptible cultivars, emphasizing greater thermo stability of the photosynthetic apparatus. The two thermo-tolerant cultivars showed higher photochemistry (ΦPSII) relative to the two susceptible cultivars. An increase in the steady state fluorescence was observed in both the susceptible cultivars as compared to the tolerant cultivars. Expression analysis revealed faster recovery of the transcripts involved in photosynthesis in tolerant cultivars as compared to susceptible cultivars. Exogenous application of the ameliorating compounds resulted in faster recovery of transcripts in all the cultivars. The result suggested that under severe stress conditions tolerant cultivars showed faster recovery and a better thermo-stability of its photosynthetic apparatus as compared to susceptible cultivars and application of epibrassinolide and calcium chloride could ameliorate the damaging effect of severe temperature stress to a considerable level in all the four cultivars under study.展开更多
This paper describes a study on the corrosion behavior of steel reinforcement in CAC mortars via electrochemical methods including corrosion potential,electrochemical impedance,and linear polarization evaluation.Resul...This paper describes a study on the corrosion behavior of steel reinforcement in CAC mortars via electrochemical methods including corrosion potential,electrochemical impedance,and linear polarization evaluation.Results indicate that there is a non-linear relationship between the corrosion degree of steel reinforcement in CAC mortar and the concentration of NaCl solution.The electrochemical parameters of specimens immersed in 3%NaCl solution suddenly drop at 40 days,earlier than 60 days of the reference.And the charge transfer resistivity of the specimen has decreased by 11 orders of magnitude at 40 days,showing an evident corrosion on steel reinforcement.However,it is interesting to notice that the corrosion is delayed by high external chloride concentration.The specimens immersed in 9%and 15%NaCl solutions remain in a relatively stable state within 120 days with slight pitting.The great corrosion protection of CAC concrete to embedded steel bars enables its wide application in marine.展开更多
基金supported by the Deutsche Forschungsgemeinschaft (ME1922/14-1) to AM。
文摘The N-terminal EF-hand calcium-binding proteins 1–3(NECAB1–3) constitute a family of predominantly neuronal proteins characterized by the presence of at least one EF-hand calcium-binding domain and a functionally less well characterized C-terminal antibiotic biosynthesis monooxygenase domain. All three family members were initially discovered due to their interactions with other proteins. NECAB1 associates with synaptotagmin-1, a critical neuronal protein involved in membrane trafficking and synaptic vesicle exocytosis. NECAB2 interacts with predominantly striatal G-protein-coupled receptors, while NECAB3 partners with amyloid-β A4 precursor protein-binding family A members 2 and 3, key regulators of amyloid-β production. This demonstrates the capacity of the family for interactions with various classes of proteins. NECAB proteins exhibit distinct subcellular localizations: NECAB1 is found in the nucleus and cytosol, NECAB2 resides in endosomes and the plasma membrane, and NECAB3 is present in the endoplasmic reticulum and Golgi apparatus. The antibiotic biosynthesis monooxygenase domain, an evolutionarily ancient component, is akin to atypical heme oxygenases in prokaryotes but is not wellcharacterized in vertebrates. Prokaryotic antibiotic biosynthesis monooxygenase domains typically form dimers, suggesting that calcium-mediated conformational changes in NECAB proteins may induce antibiotic biosynthesis monooxygenase domain dimerization, potentially activating some enzymatic properties. However, the substrate for this enzymatic activity remains uncertain. Alternatively, calcium-mediated conformational changes might influence protein interactions or the subcellular localization of NECAB proteins by controlling the availability of protein–protein interaction domains situated between the EF hands and the antibiotic biosynthesis monooxygenase domain. This review summarizes what is known about genomic organization, tissue expression, intracellular localization, interaction partners, and the physiological and pathophysiological role of the NECAB family.
基金supported by the National Natural Science Foundation of China,Nos.81901098(to TC),82201668(to HL)Fujian Provincial Health Technology Project,No.2021QNA072(to HL)。
文摘The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channelspecific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood–brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
文摘By using a downward penetration testing device, a large number of experiments were made to investigate the effects of surfactants (sodium succinate, sodium dodecyl sulfonate and dodecyl benzene sulfonic acid sodium salt) on the penetration ability of the calcium chloride and water glass solutions in four dust samples. The experimental results showed that the surfactants can enhance the penetration ability and decrease the surface tension of the calcium chloride and water glass solutions in great extent. After adding the surfactants in 0.2—0.6 wt.% to the solutions of calcium chloride and water glass in 5—25 wt.% respectively, the largest percent of penetration ability increases to 28% more. Among the three surfactants, the size of their effects on the penetration ability of calcium chloride and water solutions in the dust samples is dodecyl benzene sulfonic acid sodium salt, sodium dodecyl sulfonate and sodium succinate.The achieved conclusions are great significant for calcium chloride and water glass to be applied in the field of soil stabilization and raising dust control.
基金Supported by the National High Technology Research and Development Program of China(2009AA02Z206,2006AA02Z239)the National Basic Research Program of China(2007CB707805)the Ministry of Science and Technology,China
文摘One of the bottlenecks for bioproduction of butyric acid as bulk chemical is the difficulty in separating butyric acid from the fermentation broth,compared with the petroleum-based chemical synthesis method.In the present work,a novel separation methodology was developed based on an aqueous two-phase system with inor-ganic salts.Calcium chloride was screened out for effective separation of butyric acid from butyric acid-water-salt systems.Within appropriate concentration range of butyric acid and salt,butyric acid was enriched in the upper phase and most of calcium ions remained in the lower phase.This"salting out"effect is very efficient to separate butyric acid from the simulated butyrate fermentation broth,which consists of butyric acid and acetic acid with concentration ratio of 4︰1,so that the final ratio of butyric acid/acetic acid in the upper phase is improved to 9.87. The aqueous two-phase system was used to separate butyric acid from the actual fermentation broth with satisfac-tory result.
基金the Research Fund for the Doctoral Program of Higher Education, China (No. 20110042120014)the Project Supported by National Natural Science Foundation of China (Nos. 51204036 and 51234009)the National Basic Research of Program of China (No. 2014CB643405)
文摘A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaC12 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were inves- tigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaC12 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching tempera- ture of 80℃, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.
文摘Vapor-liquid equilibria for water+hydrochloric acid+magnesium chloride and water+hydrochloric acid+calcium chloride systems at atmospheric pressure were measured using a Othmer-type equilibrium still. The experimental data are correlated using a modified Meissner’s method. Satisfactory agreements are obtained between the experimental and the calculated results.
文摘Objective A calcium-activated chloride current (ICl(Ca)) has been observed in medium-sized sensory neurons of the dorsal root ganglion (DRG). Axotomy of the sciatic nerve induces a similar current in the majority of medium and large diameter neurons. Our aim is to identify the molecule(s) underlying this current. Methods Using conventional and quantitative RT-PCR, we examined the expression in DRG of members of three families of genes, which have been shown to have latch) current inducing properties. Results We showed the detection of transcripts representing several members of these families, i.e. chloride channel calciumactivated (CLCA), Bestrophin and Tweety gene families in adult DRG, in the normal state and 3 d after sciatic nerve section, a model for peripheral nerve injury. Conclusion Our analysis revealed that that mBestl and Tweety2 appear as the best candidates to play a role in the injury-induced Icl(Ca) in DRG neurons.
文摘The CaCl2 solubility in 2-methyl-butanol acetate and the vapor pressure of 2-methyl-butanol acetate containing CaCl2 were measured in the range of 90-135°C and from very low salt concentration to saturation.The experimental data were correlated with two equations,a modified Antoine equation with the dissolved salt taken into account and a nonrandom two liquid-electrolyte(e-NRTL)model.Both models are in good agreement with the experimental data.This study provides essential physical data for further investigation of vapor-liquid equilibrium system containing salt.
文摘Corundum spinel castable was prepared using tabular corundum as aggregates,white fused corundum powder,spinel powder and alumina powder as the matrix,pure calcium aluminate cement as a binder,and extra adding calcium chloride(0,1%,2%,and 3%,by mass).The effects of the CaCl2 addition on the cold physical properties,the hot strength,the thermal shock resistance and the microstructure of the castable were studied.The results show that,for the corundum spinel castable fired at 1550℃,with the increase of the CaCl2 addition from 0 to 3%,the cold strengthes first increase,then decrease,the apparent porosity increases,the volume density decreases,and the linear change rate first decreases and then increases,while the overall change is not significant;however,the hot modulus of rupture and the thermal shock resistance are obviously improved.This is mainly due to that,CaCl2 is evenly distributed in the castable in the form of solution,and reacts with Al2O3 to form small flake CA6 crystals,which evenly distributed in the sample matrix strengthening and toughening the material.
文摘The chemism of the chlorination of copper (I) sulphide by calcium chloride in the presence of oxygen has been determined based on the thermodynamic analysis in the Cu2S-CaCl2-O2 system as well as characterization of used raw materials and obtained products. The influence of temperature (from 473 to 773 K), time (from 2 to 120 min), oxygen flow (from 20 to 100 L/h) and calcium chloride quantity (from 5 to 40%) on the chlorination degree has been investigated. Kinetic analysis and the activation energy values of 20.89 kJ/mol showed that the chlorination of copper (I) sulphide by calcium chloride in the presence of oxygen is diffusion controlled.
基金Project(50974018)supported by the National Natural Science Foundation of ChinaProject(108007)supported by Key Project of the Ministry of Education of China
文摘Gypsum crystallization along with the simultaneous regeneration of KCl was investigated by the reaction of CaCl2 solution with K2SO4.Well developed sheet structure gypsum crystals were produced when K2SO4 solution was added into the CaCl2 solution by slow titration or in multiple stages over 2-8 h followed by 2 h equilibration.In order to regenerate KCl solution as concentrated as possible,K2SO4 solid was added into the given CaCl2 solution instead of K2SO4 solution,obtaining gypsum crystals with almost the same quality by multistage addition with[SO4 2-]/[Ca 2+]molar ratio no larger than 0.8.However,impurity of K2SO4·CaSO4·H2O was detected by XRD and was further confirmed by SEM-EDS in the produced crystals when the[SO4 2-]/[Ca 2+] ratio increased to 1.1.It is proved that appearance of the double sulfate is attributed to the relatively high concentration of K2SO4.So,it is essential to properly control the[SO4 2-]/[Ca 2+]ratio and make sure[Ca 2+ ]in excess to suppress the solubility of CaSO4 even at the expense of low calcium removal rate.
文摘The aim of this study was to investigate the effect of storage conditions on the sensory quality, colour and texture of fresh-cut cabbage during the addition of ascorbic acid, citric acid and calcium chloride. Ascorbic acid maintained the overall quality for 14 days at 0℃ and 7 days at 5℃;no difference, however, was observed regarding browning of cut surface compared to the control sample at both storage temperatures. Calcium chloride maintained the overall quality and cut surface browning for 14 days at both storage temperatures. It was also found that citric acid 1% can be used for minimally processed cabbage. Soaking with citric acid helped retain the color and increased the overall acceptance and organoleptic quality of fresh cut cabbage;it reduced browning of the cut surface and protected against formation of black specks. Citric acid treatment combined with low temperature storage (0℃) prolonged the shelf life of minimally processed cabbage for 22 days, time sufficient for acceptable marketing of the product. The lightness of minimally processed cabbage decreased linearly from 70.94 ± 6 to 63.8 ± 8.5 - 61.3 ± 8 units for the chemical treatments during 22 days of storage at 0℃. Hue angle values during storage time were also significantly influenced by chemical treatments mainly at 0℃.
文摘A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during the period of 5th March to 20th April, 2017. The experiment was laid to fit a completely randomized design (CRD) with seven treatments [Reference soil (T0), Cow dung (T1), Rice husk (T2), Gypsum (T3), Calcium chloride (T4), Cow dung + Rice husk (T5) and Gypsum + Calcium chloride (T6)] each having three replications for this experiment. After incubation (45 days), the laboratory investigation was carried out in the Soil, Water and Environment Discipline, Khulna University, Khulna, Bangladesh. Results indicate that the individual or combined effect of gypsum (T3) was more effective in changing EC and SAR. Gypsum application in combination with calcium chloride (T6) improved the soil chemical properties by reducing the EC. Among the treatment, calcium chloride (T4) had a remarkable effect in reducing sodium adsorption ratio and gypsum had a remarkable effect in reducing pH. Cow dung (T1), rice husk (T2), combination of cow dung and rice husk (T5) were less effective to reduce EC, pH and SAR. It’s measured for soils of different soil amendments varied significantly
基金the National Nature Science Foundation of China(31101556).
文摘Salt stress is one of the most serious abiotic stresses limiting plant growth and development.Calcium as an essential nutrient element and important signaling molecule plays an important role in ameliorating the adverse effect of salinity on plants.This study aimed to investigate the impact of exogenous calcium on improving salt tolerance in Tartary buckwheat cultivars,cv.Xinong9920(salt-tolerant)and cv.Xinong9909(salt-sensitive).Four-week-old Tartary buckwheat seedlings under 100 mM NaCl stress were treated with and without exogenous calcium chloride(CaCl_(2)),Ca^(2+)chelator ethylene glycol tetraacetic acid(EGTA)and Ca^(2+)-channel blocker lanthanum chloride(LaCl_(3))for 10 days.Then,some important physiological and biochemical indexes were determined.The results showed that salt stress significantly reduced seedling growth,decreased photosynthetic pigments,inhibited antioxidants and antioxidant enzyme activities.However,it increased the reactive oxygen species(ROS)levels in the two Tartary buckwheat cultivars.Exogenous 10 mM CaCl_(2)application on salt-stressed Tartary buckwheat seedlings obviously mitigated the negative effects of NaCl stress and partially restored seedlings growth.Ca^(2+)-treated salt-stressed seedlings diplayed a suppressed accumulation of ROS,increased the contents of total chlorophyll,soluble protein,proline and antioxidants,and elevated the activities of antioxidant enzymes compared with salt stress alone.On the contrary,the addition of 0.5 mM LaCl_(3)and 5 mM EGTA on salt-stressed Tartary buckwheat seedlings exhibited the opposite effects to those with CaCl_(2)treatment.These results indicate that exogenous Ca^(2+)can enhance salt stress tolerance and Ca^(2+)supplementation may be an effective practice to cultivate Tartary buckwheat in saline soils.
文摘To investigate the biobeical effects of terbium (Tb), male mice were intravenously ad ministered with TbCl3 at 10, 25, or 50 mg Tb/kg. Time-course and dose-related changes in organ distributions of Tb were determined . More than 95 % of the Tb in blood was in plas ma, and the concentrations decreased rapidly. Contrary to normal pharmacokinetics, Tb con centrations in plasma were higher in the 10 mg/kg group than in the 50 mg/kg group. The concentrations after injection of 25 mg/kg were between 10 and 50 mg/kg injections. Tb was incorporated mainly in liver, lung, and spleen. In all groups more than 80% of Tb adminis tered were found in these three organs. Disappearance of Tb in these organs was very slow.Tb was also found in kidney, heart and other organs. Coincidentally, it was found that the Ca concentration was increased in organs in which Tb was incorporated. After administration of Tb (50 mg/kg) the Ca concentration, compared to the controls, was 70-fold in spleen, 20-fold in lung, and 6-fold in liver. There were highly positive correlations between Tb and Ca concentrations in organs. Excretion of Tb in urine was 0. 15 ~ 0. 3 % and that in feces was 1.7~12. 5 % for up to 7 days. These results indicate that liver, lung, and spleen are the main target organs of Tb administered intravenously, and that the increase in Ca concentrations is one of the important biological effects of Tb in target organs
基金Indian Institute of Integrative Medicine, Council of Scientific and Industrial Research
文摘AIM: To evaluate the protective effect of 2′-p-hydroxy benzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HUH-7 cel Is.METHODS: CCI4 is a well characterized hepatotoxin, and inducer of cytochrome P450 2E1 (CYP2E1)-mediated oxidative stress. In addition, lipid peroxidation and accumulation of intracellular calcium are important steps in the pathway involved in CCl4 toxicity. Liver cells (HUH-7) were treated with CCI4, and the mechanism of the cytoprotective effect of NG was assessed. Silymarin, a known hepatoprotective drug, was used as control. RESULTS: NG protected HUH-7 cells against CCl4 toxicity and loss of viability without modulating CYP2E1 activity. Prevention of CCl4 toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species (ROS), a decrease in lipid peroxidation and accumulation of intracellular Ca^2+ levels and maintenance of intracellular glutathione homeostasis. Decreased mitochondrial membrane potential (MMP), induction of caspases mediated DNA fragmentation and cell cycle arrest, as a result of CCl4 treatment, were also blocked by NG. The protection afforded by NG seemed to be mediated by activation of cyclic adenosine monophosphate (cAMP) synthesis and inhibition of phospholipases (cPLA2). CONCLUSION: NG exerts a protective effect on CYP2E1-dependent CCl4 toxicity via inhibition of lipid peroxidation, followed by an improved intracellular calcium homeostasis and inhibition of Ca^2+-dependent proteases.
文摘Fermented chile pepper mash (Capsicum annuum cv. Mesilla Cayenne) is a major industrial food product in New Mexico. The fermentation of chile pepper mash depends on temperature, acidity, salt concentration, dissolved air, available carbohydrates and enzymes. The objective of this study was to evaluate the effects of the addition of calcium chloride (CaCI2) on the microbial characteristics of the pepper mash fermentation. Nine five gallon buckets were prepared with pepper that had been washed and ground by the manufacturer, each with 15% sodium chloride added. The buckets were allotted randomly to 1 of 3 treatments. The treatments included no CaCl2, 0.2% CaCl2 and 0.4% CaCl2 added to the pepper mash. Samples were stored at room temperature and sampled over a 3 months period to examine changes in the microflora. Chile mash samples were serially diluted in butterfield's phosphate buffer for microbial enumeration. Aerobic plate counts were conducted by pour plating with an overlay. Petrifilms were used for E. coil/coliform counts and Enterobacteriaceae. Yeasts and molds were surface plated on Rose Bengal Chloramphenicol agar while streptococci and lactobacilli were plated onto M17 and acidified MRS respectively. Aerobic plate counts, coliforms, E. coli, Enterobacteriaceae, yeast, mold, lactobacilli, and streptococci were not affected by CaCl2 level. The addition of 0.4% CaCl2 was found to have no effect on the chile pepper mash fermentation.
文摘Objective To explore the toxic effects of mercuric chloride (HgCl 2) on vascular smooth muscle as well as its relationship to calcium antagonist. Methods By using isolated vascular tension methods, we studied the effect of HgCl 2 on isolated rabbit aortic rings. Results HgCl 2 (1-100 μmol·L -1) caused a concentration-dependent contraction of rabbit aortic rings, which did not change with phentolamin or without endothelium. In KH solution with Ca 2+ , the maximum contraction amplitude reduced by(61.2±3.3)%. Nifedipine produced a concentration-dependent decrease of the maximum contraction amplitude. Conclusion Calcium antagonist has protective effects on vascular smooth muscle against damage induced by HgCl 2.
文摘Climate change is expected to unleash severe and frequent heat waves in future, adversely affecting crop productivity. The aim of this study was to examine the effect of two separate episodes of heat stress, mimicking heat wave conditions on the physiology of four Indian bread wheat cultivars and to study the ameliorating effects of epibrassinolide (BR) and calcium chloride on the recovery of these cultivars. The two thermo-tolerant cultivars C306 and K7903 suffered less inhibition of photosystem II efficiency as compared to the two thermo-susceptible cultivars HD2329 and PBW343. Application of BR and calcium chloride resulted in faster recovery in all the four cultivars. Measurement of the minimum fluorescence (Fo) versus temperature curves revealed a higher inflection temperature of Fo (Ti) for the two tolerant cultivars as compared to the susceptible cultivars, emphasizing greater thermo stability of the photosynthetic apparatus. The two thermo-tolerant cultivars showed higher photochemistry (ΦPSII) relative to the two susceptible cultivars. An increase in the steady state fluorescence was observed in both the susceptible cultivars as compared to the tolerant cultivars. Expression analysis revealed faster recovery of the transcripts involved in photosynthesis in tolerant cultivars as compared to susceptible cultivars. Exogenous application of the ameliorating compounds resulted in faster recovery of transcripts in all the cultivars. The result suggested that under severe stress conditions tolerant cultivars showed faster recovery and a better thermo-stability of its photosynthetic apparatus as compared to susceptible cultivars and application of epibrassinolide and calcium chloride could ameliorate the damaging effect of severe temperature stress to a considerable level in all the four cultivars under study.
基金Funded by National Natural Science Foundation of China(Nos.51772212,51402216,51978505)。
文摘This paper describes a study on the corrosion behavior of steel reinforcement in CAC mortars via electrochemical methods including corrosion potential,electrochemical impedance,and linear polarization evaluation.Results indicate that there is a non-linear relationship between the corrosion degree of steel reinforcement in CAC mortar and the concentration of NaCl solution.The electrochemical parameters of specimens immersed in 3%NaCl solution suddenly drop at 40 days,earlier than 60 days of the reference.And the charge transfer resistivity of the specimen has decreased by 11 orders of magnitude at 40 days,showing an evident corrosion on steel reinforcement.However,it is interesting to notice that the corrosion is delayed by high external chloride concentration.The specimens immersed in 9%and 15%NaCl solutions remain in a relatively stable state within 120 days with slight pitting.The great corrosion protection of CAC concrete to embedded steel bars enables its wide application in marine.