A field experiment, involving lime N (calcium cyanamide, CaCN2) fertilization as a control measure, was conducted to study environmental problems induced by long-term heavy N application in Japanese tea fields. Long-t...A field experiment, involving lime N (calcium cyanamide, CaCN2) fertilization as a control measure, was conducted to study environmental problems induced by long-term heavy N application in Japanese tea fields. Long-term tea cultivation caused serious soil acidification. Seventy-seven percent of the 70 tea fields investigated had soil pH values below 4.0, and 9% below 3.0, with the lowest value of 2.7. Moreover, excess N application in tea fields put a threat to plant growth, induced serious nitrate contamination to local water, and caused high nitrous oxide loss. Compared with the conventional high N application treatment (1100 kg N ha-1) without lime N, the low N application (400 kg N ha-1) with calcium cyanamide effectively stopped soil acidification as well as achieved the same or slightly higher levels in tea yield and in total N and amino acid contents of tea shoots. The application of calcium cyanamide could be a suitable fertilization for the prevention of environmental problems in tea cultivation.展开更多
To determine the effects of different kinds of nitrogen fertilizer,especially high-efficiency slowrelease fertilizers,on soil pH,nitrogen(N)and microbial community structures in an acidic celery soil,four treatments(C...To determine the effects of different kinds of nitrogen fertilizer,especially high-efficiency slowrelease fertilizers,on soil pH,nitrogen(N)and microbial community structures in an acidic celery soil,four treatments(CK,no N fertilizer;NR,urea;PE,calcium cyanamide fertilizer;and SK,controlled-release N fertilizer)were applied,and soil pH,total soil N,inorganic N,and soil microbial biomass C were analyzed.Phospholipid fatty acids(PLFAs)were extracted and detected using the MIDI Sherlock microbial identification system.The PE treatment significantly improved soil pH,from 4.80 to>6.00,during the whole growth period of the celery,and resulted in the highest celery yield among the four treatments.After 14 d application of calcium cyanamide,the soil nitrate content significantly decreased,but the ammonium content significantly increased.The PE treatment also significantly increased soil microbial biomass C during the whole celery growth period.Canonical variate analysis of the PLFA data indicated that the soil microbial community structure in the CK treatment was significantly different from those in the N applied treatments after 49 d fertilization.However,there was a significant difference(P<0.05)in soil microbial community structure between the PE treatment and the other three treatments at the end of the experiment.Calcium cyanamide is a good choice for farmers to use on acidic celery land because it supplies sufficient N,and increases soil pH,microbial biomass and the yield of celery.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 40471066)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-417)
文摘A field experiment, involving lime N (calcium cyanamide, CaCN2) fertilization as a control measure, was conducted to study environmental problems induced by long-term heavy N application in Japanese tea fields. Long-term tea cultivation caused serious soil acidification. Seventy-seven percent of the 70 tea fields investigated had soil pH values below 4.0, and 9% below 3.0, with the lowest value of 2.7. Moreover, excess N application in tea fields put a threat to plant growth, induced serious nitrate contamination to local water, and caused high nitrous oxide loss. Compared with the conventional high N application treatment (1100 kg N ha-1) without lime N, the low N application (400 kg N ha-1) with calcium cyanamide effectively stopped soil acidification as well as achieved the same or slightly higher levels in tea yield and in total N and amino acid contents of tea shoots. The application of calcium cyanamide could be a suitable fertilization for the prevention of environmental problems in tea cultivation.
基金financially supported by the Ningbo Agricultural Science and Education Project(2013NK29)the National Natural Science Foundation of China(41301251).
文摘To determine the effects of different kinds of nitrogen fertilizer,especially high-efficiency slowrelease fertilizers,on soil pH,nitrogen(N)and microbial community structures in an acidic celery soil,four treatments(CK,no N fertilizer;NR,urea;PE,calcium cyanamide fertilizer;and SK,controlled-release N fertilizer)were applied,and soil pH,total soil N,inorganic N,and soil microbial biomass C were analyzed.Phospholipid fatty acids(PLFAs)were extracted and detected using the MIDI Sherlock microbial identification system.The PE treatment significantly improved soil pH,from 4.80 to>6.00,during the whole growth period of the celery,and resulted in the highest celery yield among the four treatments.After 14 d application of calcium cyanamide,the soil nitrate content significantly decreased,but the ammonium content significantly increased.The PE treatment also significantly increased soil microbial biomass C during the whole celery growth period.Canonical variate analysis of the PLFA data indicated that the soil microbial community structure in the CK treatment was significantly different from those in the N applied treatments after 49 d fertilization.However,there was a significant difference(P<0.05)in soil microbial community structure between the PE treatment and the other three treatments at the end of the experiment.Calcium cyanamide is a good choice for farmers to use on acidic celery land because it supplies sufficient N,and increases soil pH,microbial biomass and the yield of celery.