α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commerciall...α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commercially available calcium sulfate dihydrates (DH, CaSO4·2H2O) with different sizes and surface morphologies were used as starting materials to synthesize high percentage α-HH via a hydrothermal method. The median particle sizes of the three types of DH were 946.7 μm, 162.4 μm and 62.4 μm, respectively. They were named as DH-L, DH-M and DH-S in this paper. The particle size distribution, morphology and phase composition of the raw materials were evaluated before synthesis. SEM results revealed that DH-L consisted of irregular large particles, while DH-M and DH-S were composed of plate-like particles with some small ones. High percentage HH can be obtained with proper synthesis parameters by hydrothermal method, specifically, 105 °C/90 min for DH-L (achieving 98.8% HH), 105°C/30 min for DH-M (achieving 96.7% HH) and 100°C/45 min for DH-S (achieving 98.4% HH). All the synthesized HH were hexagonal columns, demonstrating that they were α-phase HH. The particle size and morphology of starting material (DH) have significant influences on not only the rate of phase transition but also the morphology of the synthesized α-HH. Calcium sulfate dihydrate cements were prepared by the synthesized α-HH. The highest compressive strength of calcium sulfate dihydrate cement was 17.2 MPa. The results show that the preparation of high percentage α-HH is feasible via a hydrothermal method and the process can be further scaled up to industrial scale production.展开更多
The influences of magnesium and ferric ions in their different ratios on the rate of gypsum crystallization were studied under the conditions similar to those of wet flue-gas desulfurization(WFGD). The results show ...The influences of magnesium and ferric ions in their different ratios on the rate of gypsum crystallization were studied under the conditions similar to those of wet flue-gas desulfurization(WFGD). The results show that addition of both Mg^2+ and Fe^3+ increased induction time and decreased the growth efficiency up to 50% compared with the baseline(without impurities) depending on the concentration and the type of impurity. The effects of Mg^2+ and Fe^3+ on the surface energy and the rate of nucleation were estimated by employing the classical nucleation theory. The surface energy decreased by 8% and 14% with the addition of 0.02 mol/L magnesium or ferric ions, respectively, compared to the baseline. Mg^2+ and Fe^3+ made the growth rate of the (020), (021) and (040) faces of gypsum crystal a much greater reduction, which leads to the formation of needle crystals compared to the baseline which favors the formation of plate or flakes. Furthermore, an edge detection program was developed to quantify the effects of impurities on the filtration rate of gypsum product. The results show that the inhibition efficiency of the presence of 0.02 mol/L Mg^2+ and Fe^3+ on the filtration rate of gypsum crystal ranges from 22% to 39%.展开更多
Calcium sulfate hemihydrate whiskers were synthesized successfully via one-step hydrothermal crystallization method using phosphogypsum at 130 °C for 240 min with an initial slurry mass fraction of 2.5 wt%. The p...Calcium sulfate hemihydrate whiskers were synthesized successfully via one-step hydrothermal crystallization method using phosphogypsum at 130 °C for 240 min with an initial slurry mass fraction of 2.5 wt%. The phase compositions, microstructures, thermal properties and molecular structures of asprepared samples were analyzed by XRD, ESEM, EDS, TG-DTA, and FT-IR. The influence of raw materials’ ball-milling time on the morphologies of whiskers was investigated. The effects of impurities on crystallization morphologies and length to diameter ratio(L/D) of calcium sulfate hemihydrate whiskers were studied. The results indicated that the calcium sulfate dihydrate crystalline could be translated directly into fibrous calcium sulfate hemihydrate whiskers. It was beneficial to form fine fiber structure when the ball-milling time of the raw material was 15 min. Aspect ratio of calcium sulfate hemihydrate whiskers decreased with increasing content of impurities. Moreover, the relative growth mechanism of whisker crystals via one-step hydrothermal crystallization method was discussed in detail.展开更多
In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uni...In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uniform morphology and high aspect ratio can be prepared by hydrothermal method in sulfuric acid solution.A new process of desulfurization gypsum activated by high-energy grinding to reduce the reaction temperature and sulfuric acid concentration was developed.Through the comparison of product morphology,the best grinding time was determined to be 3.5 h.The mechanism of desulfurization gypsum through physical–chemical coupling to reduce energy consumption was clarified.The activation of desulfurization gypsum by grinding and the acidic environment provided by the sulfuric acid solution made the calcium sulfate solution reached rapid saturation and accelerated the nucleation rate.By calculating the conversion and crystallization rate of calcium sulfate whiskers,it was found that there were obvious"autocatalytic"kinetic characteristics during the crystallization process.展开更多
The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction...The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction method is using expansive shotcrete mixture consisting of calcium sulfoaluminate cement(CSA), ordinary Portland cement(OPC), and calcium sulfate(CS) to reduce shrinkage. Furthermore, fibers can be added to the mixture to restrain expansion and impede cracking. The objective of this paper is to study the effects of nylon fiber, glass fiber, and steel fiber on an expansive shotcrete mixture that can better resist cracking. In this study, parameters such as density, water absorption, volume of permeable voids, unconfined compressive strength(UCS), splitting tensile strength(STS), and volume change of fiber-added expansive mixtures were determined at different time periods(i.e. the strengths on the 28 th day, and the volume changes on the 1 st, 7 th, 14 th, 21 st, and 28 th days). The results show that addition of fibers can improve mixture durability, in the form of decreased water absorption and reduced permeable pore space content. Moreover, the expansion of the CSA-OPC-CS mixture was restrained up to50% by glass fiber, up to 43% by nylon fiber, and up to 28% by steel fiber. The results show that the STS was improved by 57% with glass fiber addition, 43% with steel fiber addition, and 38% with nylon fiber addition. The UCS was also increased by 31% after steel fiber addition, 26% after nylon fiber addition, and16% after glass fiber addition. These results suggest that fiber additions to the expansive shotcrete mixtures can improve durability and strengths while controlling expansion.展开更多
Plenty of flue gas desulfurization(FGD) gypsum generated from coal-fired power plants for sulfur dioxide sequestration caused many environmental issues. Preparing calcium sulfate whisker(CSW) from FGD gypsum by hydrot...Plenty of flue gas desulfurization(FGD) gypsum generated from coal-fired power plants for sulfur dioxide sequestration caused many environmental issues. Preparing calcium sulfate whisker(CSW) from FGD gypsum by hydrothermal synthesis is considered to be a promising approach to solve this troublesome problem and utilize calcium sulfate in a high-value-added way. The effects of particle size of FGD gypsum, slurry concentration,and additives on CSW were investigated in this work. The results indicated that fine particle size of FGD gypsum and moderately high slurry concentration were beneficial for crystal nucleation and growth. Three additives of magnesium chloride, citric acid, and sodium dodecyl benzene sulfonate(SDBS) were employed in this study. It was found that mean length and aspect ratio of CSW were both decreased by the usage of magnesium chloride,while a small quantity of citric acid or SDBS could improve the CSW morphology. When multi-additives of citric acid-SDBS were employed, the mean length and aspect ratio increased more than 20%. Moreover, surface morphology of CSW went better, and the particle size and crystal shape became more uniform.展开更多
The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-r...The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electronic probe micro analysis (EPMA), scanning electron microscopy (SEM) and differential scanning calorimeter (DSC) measurements. The experimental results show that compared with STP addition, compositing STP with polycarboxylate (PC) plasticizer, the final setting time is prolonged from 0.5h to 2hs. While formulating STP with naphthalene-based plasticizer (NAP) or sulfonate melamine formaldehyde plasticizer (SMF), the final setting time is reduced to quarter of an hour. Similar changes can also be found in the rate of exothermic hydration and hydration degree. Formulating STP with suitable addition of PC can enhance the strength, while compositing STP and NAP or SMF weakens the strength. Besides, adding STP or STP and SMF, obvious movement (more than 1ev) of binding energy of Ca2p1/2 and Ca2p3/2 is detected. Compared with STP addition, content of the characteristic element (P) of STP is cut down form 1.1% to 0.49% by compositing STP with SMF. Furthermore, as hydration age increases, hydration inhibition in the presence of admixtures weakens and even disappears within 56 h.展开更多
1 Introduction There exist calcium and sulfate ions outside sodium chloride in solution mining for calcium sulfate brine.The calcium and sulfate ions not only affect the purity of the vacuum salt products,but also inc...1 Introduction There exist calcium and sulfate ions outside sodium chloride in solution mining for calcium sulfate brine.The calcium and sulfate ions not only affect the purity of the vacuum salt products,but also increase the scaling of vacuum evaporation tanks and brine reusing pipes.Additives have certain impacts on the crystallization dynamics(Randolph et al.,1971).The crystallization展开更多
1 Introduction Calcium sulfate deposition is one of the most important and serious problems faced by heat transfer equipment during operation(Pavlos et al.,1999;Liu et al.,1996).The crystallization of calcium sulfate ...1 Introduction Calcium sulfate deposition is one of the most important and serious problems faced by heat transfer equipment during operation(Pavlos et al.,1999;Liu et al.,1996).The crystallization of calcium sulfate is known as a major展开更多
Objective:To prepare a bone repair material with certain mechanical strength and biological activity,this paper used calcium sulfate hemihydrate(CSH)powder compounded with calcium hydroxide(Ca(OH)2)powder to prepare a...Objective:To prepare a bone repair material with certain mechanical strength and biological activity,this paper used calcium sulfate hemihydrate(CSH)powder compounded with calcium hydroxide(Ca(OH)2)powder to prepare a bone repair scaffold material for physicochemical property characterization and testing.Methods:The physical and chemical properties and characterization of the dried and cured bone repair materials were determined by Fourier infrared spectroscopy(FT-IR),X-ray diffraction(XRD),and scanning electron microscopy;Universal material testing machine to determine the mechanical and mechanical strength of composite materials.Results:XRD showed that the structure of the composite material phase at 5%concentration was calcium sulfate hemihydrate and calcium hydroxide after hydration.The FT-IR and XRD analyses were consistent.Scanning electron microscopy(SEM)results showed that calcium hydroxide was uniformly dispersed in the hemihydrate calcium sulfate material.0%,1%,5%,and 10%specimen groups had compressive strengths of 3.86±3.1,5.27±1.28,8.22±0.96,and 14.4±3.28 MPa.10%addition of calcium hydroxide significantly improved the mechanical strength of the composites,but also reduced the the porosity of the material.Conclusion:With the addition of calcium hydroxide,the CSH-Ca(OH)2 composite was improved in terms of mechanical material and is expected to be a new type of bone repair material.展开更多
Although common calcium-containing minerals such as calcite and gypsum may fix arsenic, the interaction between modified calcic minerals and arsenic has seldom been reported. The uptake behavior of As(Ⅲ)/As(V) from a...Although common calcium-containing minerals such as calcite and gypsum may fix arsenic, the interaction between modified calcic minerals and arsenic has seldom been reported. The uptake behavior of As(Ⅲ)/As(V) from aqueous solutions by calcium sulfate whisker(CSW, dihydrate or anhydrite) synthesized through a cooling recrystallization method was explored. A series of batch experiments were conducted to examine the effect of p H, reaction time, whisker dosage, and initial As concentration. X-ray diffraction(XRD) and scanning electron microscopy(SEM) were used to characterize the samples prepared. The results showed that p H of the aqueous solution was an important parameter for As(Ⅲ)/As(V) uptake, and an excellent removal efficiency could be achieved under strongly alkaline condition. The data from batch experiments for reaction of As(V) with calcium sulfate dihydrate whisker(CSDW) and calcium sulfate anhydrous whisker(CSAW) were well described with extended Langmuir EXT1 model, from which theoretic maximum adsorption capacity of 46.57 mg As(V)·(g CSDW)-1and 39.18 mg As(V)·(g CSAW)-1were obtained. Some calcium arsenate solids products,such as Ca As O3(OH)(weilite, syn), Ca3(As O4)2(calcium arsenate), Ca O–As2O5, Ca–As–O, Ca5(As O4)3OH·x H2O(calcium arsenate hydroxide hydrate), and Ca H(As O4)·2H2O(hydrogen calcium arsenic oxide hydrate), were detected at p H = 12.5 through XRD analysis. This indicates that the interaction mechanism between As(V) and CSW is a complex adsorption process combined with surface dissolution and chemical precipitation.展开更多
In order to eliminate the effect of calcite associated with scheelite on the scheelite flotation, hydrochloric acid was used to dissolve the calcite, and the soaking solution was used to prepare CaSO_4 whiskers by hyd...In order to eliminate the effect of calcite associated with scheelite on the scheelite flotation, hydrochloric acid was used to dissolve the calcite, and the soaking solution was used to prepare CaSO_4 whiskers by hydrothermal reaction with sulfuric acid at ambient pressure. First, the condition experiments of preparing CaSO_4 whiskers by using CaCl_2 and H_2SO_4 were carried out to optimize reaction parameters of the crystallization process. The optimal conditions were: at 102 ℃ reaction temperature, 0,5 mol/L reactant concentration and 60 min reaction time. Then based on the condition experiments and considering keeping acid concentration stable for achieving HCl recycling, Calcium sulfate whiskers with the average diameter of 1.41 μm and the average aspect ratio of 109 were prepared by the soaking solution after evaporating to half of its volume and 1.0 mol/L H_2SO_4 at 102 ℃ for 60 min: After ion exchange processing,the filtrate could be used as HCl in the process of HCl dissolution.展开更多
Multilevel lumbar fusion usually requires a large quantity of iliac crest bone graft but the supply is usually insufficient, so an alternative bone graft substitute for autograft is needed. This prospective study inve...Multilevel lumbar fusion usually requires a large quantity of iliac crest bone graft but the supply is usually insufficient, so an alternative bone graft substitute for autograft is needed. This prospective study investigated the efficacy of calcium sulfate by comparing the fusion rates between the experimental material (calcium sulfate pellets with bone chips from laminectomy) and autologous iliac bone graft in long segment (three-or four-level) lumbar and lumbosacral posterolateral fusion. Forty-five patients with degenerative scoliosis or spondylolisthesis received multilevel spine fusion and decompression. The experimental material of calcium sulfate pellets with decompression bone chips was placed on the experimental side and the iliac crest bone graft was placed on the control side. The fusion status was assessed radiographically at three-month intervals, and solid fusion was defined as a clear continuous intertransverse bony bridge at all levels. The average follow-up period was 34.4 months. Twenty-nine (64.4%) patients showed solid fusion on the experimental side and 39 (86.7%) patients on the control side. The overall fusion rate was 86.7%. A statistically significant relation was found between the two sides with the Kappa coefficient of agreement of 0.436. Compared to the control side, the fusion rate of experimental side is significantly reduced (p = 0.014). The fusion ability of autograft is higher than the experimental material in multilevel lumbar posterolateral fusion. However, the overall fusion rate of calcium sulfate pellets is improved, compared with previously reported rates, which suggested that such material may be considered as an acceptable bone graft extender.展开更多
With the aim of improving the durability and safety,erosion time,and cost-effective of asphalt road,a composite of modified calcium sulfate whisker-styrene butadiene rubber modified asphalt(MCSWSBRMA)was prepared via ...With the aim of improving the durability and safety,erosion time,and cost-effective of asphalt road,a composite of modified calcium sulfate whisker-styrene butadiene rubber modified asphalt(MCSWSBRMA)was prepared via thermal doping.Firstly,stearic acid and titanate coupling agent(NDZ-201)were used as a modifier to transform calcium sulfate whisker(CSW)into MCSW via wet modification method at 60℃and anhydrous ethanol as a dispersant.What is more,the optimum loading of modifier(a mixture of 25%stearic acid+75%NDZ-201)was found to be at 2%to prepare MCSW.Subsequently,a composite of MCSW-SBRMA was prepared with different loading of MCSW(i.e.2%to 8%)to enhance the softening point of asphalt.In this study,it was found that 4%of modifiers was the best composition to improve the MCSW-SBRMA properties as elucidated in the orthogonal experiment table L_(16)(42).The effects of MCSW and SBR addition on several properties of asphalt were studied by multiple routine tests including penetration,segregation test,and so on.The results show that:2%to 8%MCSW can increase the softening point of SBR modified asphalt(SBRMA)by 7%to 8%.4%MCSW increased the PG of SBRMA from 64 to 70,which greatly improved the high temperature characteristics of asphalt.The 5℃ductility of MCSW-SBRMA is greater than 100 cm,which greatly improves the low temperature performance of asphalt.Through the application of fluorescence microscopy(FM),Fourier transform infrared spectroscopy(FTIR),Scanning electron microscopy(SEM),and energy dispersive spectroscopy(SEM-EDS),it has been demonstrated that MCSW-SBR effectively alters asphalt in a highly uniform manner,with some MCSW still retaining large cross sections,thereby facilitating the dispersion of shear stress and enhancing the durability of asphalt.展开更多
Recombinant human bone morphogenetic protein-2(rhBMP-2)has been FDA-approved for lumbar fusion,but supraphysiologic initial burst release due to suboptimal carrier and late excess bone resorption caused by osteoclast ...Recombinant human bone morphogenetic protein-2(rhBMP-2)has been FDA-approved for lumbar fusion,but supraphysiologic initial burst release due to suboptimal carrier and late excess bone resorption caused by osteoclast activation have limited its clinical usage.One strategy to mitigate the pro-osteoclast side effect of rhBMP-2 is to give systemic bisphosphonates,but it presents challenges with systemic side effects and low local bioavailability.The aim of this in vivo study was to analyze if posterolateral spinal fusion(PLF)could be improved by utilizing a calcium sulfate/hydroxyapatite(CaS/HA)carrier co-delivering rhBMP-2 and zoledronic acid(ZA).Six groups were allocated(CaS/HA,CaS/HA+BMP-2,CaS/HA+systemic ZA,CaS/HA+local ZA,CaS/HA+BMP-2+systemic ZA,and CaS/HA+BMP-2+local ZA).10-week-old male Wistar rats,were randomly assigned to undergo L4-L5 PLF with implantation of group-dependent scaffolds.At 3 and 6 weeks,the animals were euthanized for radiography,μCT,histological staining,or biomechanical testing to evaluate spinal fusion.The results demonstrated that the CaS/HA biomaterial alone or in combination with local or systemic ZA didn’t support PLF.However,the delivery of rhBMP-2 significantly promoted PLF.Combining systemic ZA with rhBMP-2 didn’t enhance spinal fusion.Notably,the co-delivery of rhBMP-2 and ZA using the CaS/HA carrier significantly enhanced and accelerated PLF,without inhibiting systemic bone turnover,and potentially reduced the dose of rhBMP-2.Together,the treatment regimen of CaS/HA biomaterial co-delivering rhBMP-2 and ZA could potentially be a safe and cost-effective off-the-shelf bioactive bone substitute to enhance spinal fusion.展开更多
Calcium sulfate hemihydrate (CSH) whiskers were synthesized by phase transition in CaCl2 solution under atmospheric pressure. Analytical-grade calcium sulfate dihydrate (AR CSD) was used as the raw material for th...Calcium sulfate hemihydrate (CSH) whiskers were synthesized by phase transition in CaCl2 solution under atmospheric pressure. Analytical-grade calcium sulfate dihydrate (AR CSD) was used as the raw material for the synthesis of CSH whiskers, according to orthogonal experiments. The effects of reaction tem- perature, AR CSD content, H2SO4 content, and reaction time were investigated, and the crystallization conditions were optimized. The as-prepared CSH whiskers displayed a regular morphology and a highly uniform size, with an aspect ratio of 105, A simulation system was also established by blending various sulfates with AR CSD, to evaluate the effects of impurities in flue gas desulfurization (FGD) gypsum. The main aim was to prepare CSH whiskers directly from FGD gypsum, without any purification, using the optimized conditions. This is a facile potential alternative process for large-scale production of CSH whiskers using abundant FGD gypsum as source materials.展开更多
Little attention has thus far been paid to the potential effect of solution composition on the hydrothermal crystallization of calcium sulfate whiskers prepared from flue-gas desulfurization(FGD) gypsum.When purifie...Little attention has thus far been paid to the potential effect of solution composition on the hydrothermal crystallization of calcium sulfate whiskers prepared from flue-gas desulfurization(FGD) gypsum.When purified FGD gypsum was used as raw material,the morphology and phase structure of the hydrothermal products grown in pure water,H2SO4-H2O,NaCl-H2O,and H2SO4-NaCl-H2O solutions as well as the solubility of purified FGD gypsum in these solutions were investigated.The results indicate that calcium sulfate whiskers grow favorably in the H2SO4-NaCl-H2O system.When prepared using 10-70 g NaCl/kg gypsum-0.01 M H2SO4-H2O at 130 ℃ for 60 min,the obtained calcium sulfate whiskers had diameters ranging from 3 to 5 |xm and lengths from 200 to 600 |xm,and their phase structure was calcium sulfate hemihydrate(HH).Opposing effects of sulfuric acid and sodium chloride on the solubility of the purified FGD gypsum were observed.With the co-presence of sulfuric acid and sodium chloride in the reaction solution,the concentrations of Ca2+ and SO42- can be kept relatively stable,which implies that the crystallization of the hydrothermal products can be controlled by changing the concentrations of sulfuric acid and sodium chloride.展开更多
The influence of Na2HPO4·12H2O on the hydrothermal formation of hemihydrate calcium sulfate(CaSO4·0.5H2O) whiskers from dihydrate calcium sulfate(CaSO4·2H2O)at 135 ℃ was investigated.Experimental r...The influence of Na2HPO4·12H2O on the hydrothermal formation of hemihydrate calcium sulfate(CaSO4·0.5H2O) whiskers from dihydrate calcium sulfate(CaSO4·2H2O)at 135 ℃ was investigated.Experimental results indicate that the addition of phosphorus accelerates the hydrothermal conversion of CaSO4·2H2O to CaSO4·0.5H2O via the formation of Ca3(PO4)2 and produces CaSO4-0.5H2O whiskers with thinner diameters and shorter lengths.Compared with the blank experiment without Na2HPO4·12H2O,the existence of minor amounts(8.65 ×10-4-4.36 × 10-3 mol/L) of Na2HPO4·12H2O led to a decrease in the diameter of CaSO4·0.5H2O whiskers from 1.0-10.0 to 0.5-2.0 μm and lengths from 70-300 to50-200 μm.展开更多
Background Cavity reconstruction after benign bone tumor removal is varied and controversial.AIIograft is widely used but is associated with complications.New bone substitutes,such as calcium sulfate artificial bone,h...Background Cavity reconstruction after benign bone tumor removal is varied and controversial.AIIograft is widely used but is associated with complications.New bone substitutes,such as calcium sulfate artificial bone,have been introduced for bone tumor operation.However,the bone healing response of artificial bone has not been compared with allograft bone.We therefore compared calcium sulfate grafts (study group) with bone allografts (control group) for the treatment of benign bone tumors.Methods We retrospectively reviewed 50 patients who underwent calcium sulfate reconstruction and 50 patients who underwent allograft cancellous bone reconstruction.The two groups were well matched.The mean follow-up time of the study group was 19.9 (12-55) months.We investigated bone healing response,complications,and factors affecting bone healing.Results At the last follow-up,84% (42/50) of cases in the study group and 62% (31/50) of cases in the control group had achieved clinical healing (P=0.013).The initial healing rate showed no significant difference between the two groups (100% vs.96%,P=0.153).The mean healing times for calcium sulfate and allograft bone were 9.6 (3-42) months and 13.8 (3-36) months,respectively (P <0.01).Complications in the study group were minor and resolved.Implant volume was a significant factor affecting bone healing.Conclusion The calcium sulfate bone substitute showed a satisfactory healing outcome and safety profile in reconstruction of bone defects after benign bone tumor curettage,especially in smaller cavities.展开更多
Background:The treatment for long bone defects has been a hot topic in the field of regenerative medicine.This study aimed to evaluate the therapeutic effects of calcium sulfate (CS) combined with platelet-rich pla...Background:The treatment for long bone defects has been a hot topic in the field of regenerative medicine.This study aimed to evaluate the therapeutic effects of calcium sulfate (CS) combined with platelet-rich plasma (PRP) on long bone defect restoration.Methods:A radial bone defect model was constructed through an osteotomy using New Zealand rabbits.The rabbits were randomly divided into four groups (n =10 in each group):a CS combined with PRP (CS-PRP) group,a CS group,a PRP group,and a positive (recombinant human bone morphogenetic protein-2) control group.PRP was prepared from autologous blood using a two-step centrifugation process.CS-PRP was obtained by mixing hemihydrate CS with PRP.Radiographs and histologic micrographs were generated.The percentage of bone regenerated bone area in each rabbit was calculated at 10 weeks.One-way analysis of variance was performed in this study.Results:The radiographs and histologic micrographs showed bone restoration in the CS-PRP and positive control groups,while nonunion was observed in the CS and PRP groups.The percentages of bone regenerated bone area in the CS-PRP (84.60 ± 2.87%) and positive control (52.21 ± 4.53%) groups were significantly greater than those in the CS group (12.34 ± 2.17%) and PRP group (16.52 ± 4.22%) (P 〈 0.001).In addition,the bone strength of CS-PRP group (43.l 0 ± 4.10%) was significantly greater than that of the CS group (20.10 ± 3.70%) or PRP group (25.10 ± 2.10%) (P 〈 0.001).Conclusion:CS-PRP functions as an effective treatment for long bone defects through stimulating bone regeneration and enhancing new bone strength.展开更多
基金financial support from the Swedish Innovation Agency(VINNOVA)and China Scholarship Council(CSC).
文摘α-calcium sulfate hemihydrate (α-HH) is known to be suitable for application as bone void filler. High percentage of α-HH is obviously needed for medical applications, especially for implantation. Three commercially available calcium sulfate dihydrates (DH, CaSO4·2H2O) with different sizes and surface morphologies were used as starting materials to synthesize high percentage α-HH via a hydrothermal method. The median particle sizes of the three types of DH were 946.7 μm, 162.4 μm and 62.4 μm, respectively. They were named as DH-L, DH-M and DH-S in this paper. The particle size distribution, morphology and phase composition of the raw materials were evaluated before synthesis. SEM results revealed that DH-L consisted of irregular large particles, while DH-M and DH-S were composed of plate-like particles with some small ones. High percentage HH can be obtained with proper synthesis parameters by hydrothermal method, specifically, 105 °C/90 min for DH-L (achieving 98.8% HH), 105°C/30 min for DH-M (achieving 96.7% HH) and 100°C/45 min for DH-S (achieving 98.4% HH). All the synthesized HH were hexagonal columns, demonstrating that they were α-phase HH. The particle size and morphology of starting material (DH) have significant influences on not only the rate of phase transition but also the morphology of the synthesized α-HH. Calcium sulfate dihydrate cements were prepared by the synthesized α-HH. The highest compressive strength of calcium sulfate dihydrate cement was 17.2 MPa. The results show that the preparation of high percentage α-HH is feasible via a hydrothermal method and the process can be further scaled up to industrial scale production.
基金Supported by the State 11.5 Support Plan(No.2006BAA01B04)the New Century Excellent Talent Support Plan of China (No.NCET-06-0513)
文摘The influences of magnesium and ferric ions in their different ratios on the rate of gypsum crystallization were studied under the conditions similar to those of wet flue-gas desulfurization(WFGD). The results show that addition of both Mg^2+ and Fe^3+ increased induction time and decreased the growth efficiency up to 50% compared with the baseline(without impurities) depending on the concentration and the type of impurity. The effects of Mg^2+ and Fe^3+ on the surface energy and the rate of nucleation were estimated by employing the classical nucleation theory. The surface energy decreased by 8% and 14% with the addition of 0.02 mol/L magnesium or ferric ions, respectively, compared to the baseline. Mg^2+ and Fe^3+ made the growth rate of the (020), (021) and (040) faces of gypsum crystal a much greater reduction, which leads to the formation of needle crystals compared to the baseline which favors the formation of plate or flakes. Furthermore, an edge detection program was developed to quantify the effects of impurities on the filtration rate of gypsum product. The results show that the inhibition efficiency of the presence of 0.02 mol/L Mg^2+ and Fe^3+ on the filtration rate of gypsum crystal ranges from 22% to 39%.
基金Funded by the National High-tech Research and Development Program of China(2011AA06A106)
文摘Calcium sulfate hemihydrate whiskers were synthesized successfully via one-step hydrothermal crystallization method using phosphogypsum at 130 °C for 240 min with an initial slurry mass fraction of 2.5 wt%. The phase compositions, microstructures, thermal properties and molecular structures of asprepared samples were analyzed by XRD, ESEM, EDS, TG-DTA, and FT-IR. The influence of raw materials’ ball-milling time on the morphologies of whiskers was investigated. The effects of impurities on crystallization morphologies and length to diameter ratio(L/D) of calcium sulfate hemihydrate whiskers were studied. The results indicated that the calcium sulfate dihydrate crystalline could be translated directly into fibrous calcium sulfate hemihydrate whiskers. It was beneficial to form fine fiber structure when the ball-milling time of the raw material was 15 min. Aspect ratio of calcium sulfate hemihydrate whiskers decreased with increasing content of impurities. Moreover, the relative growth mechanism of whisker crystals via one-step hydrothermal crystallization method was discussed in detail.
基金supported by the State Key Laboratory of Mineral Processing Science and Technology Open Fund(BGRIMM-KJSKL-2017-16)Liaoning Provincial Department of Education Youth Project(LJ2017QL028)Coal Resource Safety Mining and Clean Utilization Engineering Research Center Open Fund(LNTU15KF18)。
文摘In this paper,the solid waste desulfurization gypsum produced by coal-fired power plants was used as a raw material to prepare calcium sulfate whiskers with high application prospects.Calcium sulfate whiskers with uniform morphology and high aspect ratio can be prepared by hydrothermal method in sulfuric acid solution.A new process of desulfurization gypsum activated by high-energy grinding to reduce the reaction temperature and sulfuric acid concentration was developed.Through the comparison of product morphology,the best grinding time was determined to be 3.5 h.The mechanism of desulfurization gypsum through physical–chemical coupling to reduce energy consumption was clarified.The activation of desulfurization gypsum by grinding and the acidic environment provided by the sulfuric acid solution made the calcium sulfate solution reached rapid saturation and accelerated the nucleation rate.By calculating the conversion and crystallization rate of calcium sulfate whiskers,it was found that there were obvious"autocatalytic"kinetic characteristics during the crystallization process.
基金financial support from Natural Sciences and Engineering ResearchCouncil(NSERC)(NSERC EGP 501335-16) along with the donated CSA cement
文摘The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction method is using expansive shotcrete mixture consisting of calcium sulfoaluminate cement(CSA), ordinary Portland cement(OPC), and calcium sulfate(CS) to reduce shrinkage. Furthermore, fibers can be added to the mixture to restrain expansion and impede cracking. The objective of this paper is to study the effects of nylon fiber, glass fiber, and steel fiber on an expansive shotcrete mixture that can better resist cracking. In this study, parameters such as density, water absorption, volume of permeable voids, unconfined compressive strength(UCS), splitting tensile strength(STS), and volume change of fiber-added expansive mixtures were determined at different time periods(i.e. the strengths on the 28 th day, and the volume changes on the 1 st, 7 th, 14 th, 21 st, and 28 th days). The results show that addition of fibers can improve mixture durability, in the form of decreased water absorption and reduced permeable pore space content. Moreover, the expansion of the CSA-OPC-CS mixture was restrained up to50% by glass fiber, up to 43% by nylon fiber, and up to 28% by steel fiber. The results show that the STS was improved by 57% with glass fiber addition, 43% with steel fiber addition, and 38% with nylon fiber addition. The UCS was also increased by 31% after steel fiber addition, 26% after nylon fiber addition, and16% after glass fiber addition. These results suggest that fiber additions to the expansive shotcrete mixtures can improve durability and strengths while controlling expansion.
基金Supported by National Science Foundation of China(51374059,51304042)the Fundamental Research Funds for the Central Universities of China(N130402020)
文摘Plenty of flue gas desulfurization(FGD) gypsum generated from coal-fired power plants for sulfur dioxide sequestration caused many environmental issues. Preparing calcium sulfate whisker(CSW) from FGD gypsum by hydrothermal synthesis is considered to be a promising approach to solve this troublesome problem and utilize calcium sulfate in a high-value-added way. The effects of particle size of FGD gypsum, slurry concentration,and additives on CSW were investigated in this work. The results indicated that fine particle size of FGD gypsum and moderately high slurry concentration were beneficial for crystal nucleation and growth. Three additives of magnesium chloride, citric acid, and sodium dodecyl benzene sulfonate(SDBS) were employed in this study. It was found that mean length and aspect ratio of CSW were both decreased by the usage of magnesium chloride,while a small quantity of citric acid or SDBS could improve the CSW morphology. When multi-additives of citric acid-SDBS were employed, the mean length and aspect ratio increased more than 20%. Moreover, surface morphology of CSW went better, and the particle size and crystal shape became more uniform.
基金Funded by the Major State Basic Research Development Program of China (973 Program) (No. 2009CB623104)the National Technology R&D Program for the 11th Five-year Plan (No. 2006BAJ05B03)
文摘The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electronic probe micro analysis (EPMA), scanning electron microscopy (SEM) and differential scanning calorimeter (DSC) measurements. The experimental results show that compared with STP addition, compositing STP with polycarboxylate (PC) plasticizer, the final setting time is prolonged from 0.5h to 2hs. While formulating STP with naphthalene-based plasticizer (NAP) or sulfonate melamine formaldehyde plasticizer (SMF), the final setting time is reduced to quarter of an hour. Similar changes can also be found in the rate of exothermic hydration and hydration degree. Formulating STP with suitable addition of PC can enhance the strength, while compositing STP and NAP or SMF weakens the strength. Besides, adding STP or STP and SMF, obvious movement (more than 1ev) of binding energy of Ca2p1/2 and Ca2p3/2 is detected. Compared with STP addition, content of the characteristic element (P) of STP is cut down form 1.1% to 0.49% by compositing STP with SMF. Furthermore, as hydration age increases, hydration inhibition in the presence of admixtures weakens and even disappears within 56 h.
基金financial support of National Nature Science Foundation (21376178)TIDA giant growth plan (2011-XJR13020)+3 种基金Tianjin Science and technology support program (12ZCDZSF06900)Tianjin University of Science and Technology fund for scientific research (20120119)Tianjin education commission program (20130509)Research fund for the doctoral program of higher education of China (20131208120001)
文摘1 Introduction There exist calcium and sulfate ions outside sodium chloride in solution mining for calcium sulfate brine.The calcium and sulfate ions not only affect the purity of the vacuum salt products,but also increase the scaling of vacuum evaporation tanks and brine reusing pipes.Additives have certain impacts on the crystallization dynamics(Randolph et al.,1971).The crystallization
基金financial support of National Nature Science Foundation (21376178)TIDA giant growth plan (2011-XJR13020)+3 种基金Tianjin Science and technology support program (12ZCDZSF06900)Tianjin University of Science and Technology fund for scientific research (20120119)Tianjin education commission program (20130509)Research fund for the doctoral program of higher education of China(20131208120001)
文摘1 Introduction Calcium sulfate deposition is one of the most important and serious problems faced by heat transfer equipment during operation(Pavlos et al.,1999;Liu et al.,1996).The crystallization of calcium sulfate is known as a major
基金National Natural Science Foundation of China(No.82060347)Postgraduate innovation research project of Hainan Medical College(No.HYYS2020-38)。
文摘Objective:To prepare a bone repair material with certain mechanical strength and biological activity,this paper used calcium sulfate hemihydrate(CSH)powder compounded with calcium hydroxide(Ca(OH)2)powder to prepare a bone repair scaffold material for physicochemical property characterization and testing.Methods:The physical and chemical properties and characterization of the dried and cured bone repair materials were determined by Fourier infrared spectroscopy(FT-IR),X-ray diffraction(XRD),and scanning electron microscopy;Universal material testing machine to determine the mechanical and mechanical strength of composite materials.Results:XRD showed that the structure of the composite material phase at 5%concentration was calcium sulfate hemihydrate and calcium hydroxide after hydration.The FT-IR and XRD analyses were consistent.Scanning electron microscopy(SEM)results showed that calcium hydroxide was uniformly dispersed in the hemihydrate calcium sulfate material.0%,1%,5%,and 10%specimen groups had compressive strengths of 3.86±3.1,5.27±1.28,8.22±0.96,and 14.4±3.28 MPa.10%addition of calcium hydroxide significantly improved the mechanical strength of the composites,but also reduced the the porosity of the material.Conclusion:With the addition of calcium hydroxide,the CSH-Ca(OH)2 composite was improved in terms of mechanical material and is expected to be a new type of bone repair material.
基金Supported by the Science and Technology Plan Project of Hunan Province(2013FJ3034)the Open Foundation of the Innovation Platform in Higher Education of Hunan Province(12K051)the programs of Xiangtan University(2011XZX12,2010QDZ37)
文摘Although common calcium-containing minerals such as calcite and gypsum may fix arsenic, the interaction between modified calcic minerals and arsenic has seldom been reported. The uptake behavior of As(Ⅲ)/As(V) from aqueous solutions by calcium sulfate whisker(CSW, dihydrate or anhydrite) synthesized through a cooling recrystallization method was explored. A series of batch experiments were conducted to examine the effect of p H, reaction time, whisker dosage, and initial As concentration. X-ray diffraction(XRD) and scanning electron microscopy(SEM) were used to characterize the samples prepared. The results showed that p H of the aqueous solution was an important parameter for As(Ⅲ)/As(V) uptake, and an excellent removal efficiency could be achieved under strongly alkaline condition. The data from batch experiments for reaction of As(V) with calcium sulfate dihydrate whisker(CSDW) and calcium sulfate anhydrous whisker(CSAW) were well described with extended Langmuir EXT1 model, from which theoretic maximum adsorption capacity of 46.57 mg As(V)·(g CSDW)-1and 39.18 mg As(V)·(g CSAW)-1were obtained. Some calcium arsenate solids products,such as Ca As O3(OH)(weilite, syn), Ca3(As O4)2(calcium arsenate), Ca O–As2O5, Ca–As–O, Ca5(As O4)3OH·x H2O(calcium arsenate hydroxide hydrate), and Ca H(As O4)·2H2O(hydrogen calcium arsenic oxide hydrate), were detected at p H = 12.5 through XRD analysis. This indicates that the interaction mechanism between As(V) and CSW is a complex adsorption process combined with surface dissolution and chemical precipitation.
基金provided by the National Key Technology R&D Programs from the Ministry of Science and Technology of China(No.2012BAB07B05)the Program of Introducing Talents of Discipline to Universities(Supported by the 111 Project,B14034)the Fundamental Research Funds for the Central Universities of Central South University(No.2016zzts104)
文摘In order to eliminate the effect of calcite associated with scheelite on the scheelite flotation, hydrochloric acid was used to dissolve the calcite, and the soaking solution was used to prepare CaSO_4 whiskers by hydrothermal reaction with sulfuric acid at ambient pressure. First, the condition experiments of preparing CaSO_4 whiskers by using CaCl_2 and H_2SO_4 were carried out to optimize reaction parameters of the crystallization process. The optimal conditions were: at 102 ℃ reaction temperature, 0,5 mol/L reactant concentration and 60 min reaction time. Then based on the condition experiments and considering keeping acid concentration stable for achieving HCl recycling, Calcium sulfate whiskers with the average diameter of 1.41 μm and the average aspect ratio of 109 were prepared by the soaking solution after evaporating to half of its volume and 1.0 mol/L H_2SO_4 at 102 ℃ for 60 min: After ion exchange processing,the filtrate could be used as HCl in the process of HCl dissolution.
文摘Multilevel lumbar fusion usually requires a large quantity of iliac crest bone graft but the supply is usually insufficient, so an alternative bone graft substitute for autograft is needed. This prospective study investigated the efficacy of calcium sulfate by comparing the fusion rates between the experimental material (calcium sulfate pellets with bone chips from laminectomy) and autologous iliac bone graft in long segment (three-or four-level) lumbar and lumbosacral posterolateral fusion. Forty-five patients with degenerative scoliosis or spondylolisthesis received multilevel spine fusion and decompression. The experimental material of calcium sulfate pellets with decompression bone chips was placed on the experimental side and the iliac crest bone graft was placed on the control side. The fusion status was assessed radiographically at three-month intervals, and solid fusion was defined as a clear continuous intertransverse bony bridge at all levels. The average follow-up period was 34.4 months. Twenty-nine (64.4%) patients showed solid fusion on the experimental side and 39 (86.7%) patients on the control side. The overall fusion rate was 86.7%. A statistically significant relation was found between the two sides with the Kappa coefficient of agreement of 0.436. Compared to the control side, the fusion rate of experimental side is significantly reduced (p = 0.014). The fusion ability of autograft is higher than the experimental material in multilevel lumbar posterolateral fusion. However, the overall fusion rate of calcium sulfate pellets is improved, compared with previously reported rates, which suggested that such material may be considered as an acceptable bone graft extender.
文摘With the aim of improving the durability and safety,erosion time,and cost-effective of asphalt road,a composite of modified calcium sulfate whisker-styrene butadiene rubber modified asphalt(MCSWSBRMA)was prepared via thermal doping.Firstly,stearic acid and titanate coupling agent(NDZ-201)were used as a modifier to transform calcium sulfate whisker(CSW)into MCSW via wet modification method at 60℃and anhydrous ethanol as a dispersant.What is more,the optimum loading of modifier(a mixture of 25%stearic acid+75%NDZ-201)was found to be at 2%to prepare MCSW.Subsequently,a composite of MCSW-SBRMA was prepared with different loading of MCSW(i.e.2%to 8%)to enhance the softening point of asphalt.In this study,it was found that 4%of modifiers was the best composition to improve the MCSW-SBRMA properties as elucidated in the orthogonal experiment table L_(16)(42).The effects of MCSW and SBR addition on several properties of asphalt were studied by multiple routine tests including penetration,segregation test,and so on.The results show that:2%to 8%MCSW can increase the softening point of SBR modified asphalt(SBRMA)by 7%to 8%.4%MCSW increased the PG of SBRMA from 64 to 70,which greatly improved the high temperature characteristics of asphalt.The 5℃ductility of MCSW-SBRMA is greater than 100 cm,which greatly improves the low temperature performance of asphalt.Through the application of fluorescence microscopy(FM),Fourier transform infrared spectroscopy(FTIR),Scanning electron microscopy(SEM),and energy dispersive spectroscopy(SEM-EDS),it has been demonstrated that MCSW-SBR effectively alters asphalt in a highly uniform manner,with some MCSW still retaining large cross sections,thereby facilitating the dispersion of shear stress and enhancing the durability of asphalt.
基金L.L.thanks the Olav Thon Foundation(Grant Number:21-90)for financial supportD.B.R.thanks Maggie-Stephens Foundation(Grant Number:20202004)+1 种基金Sten K Johnson Foundation(Grant Number:2021-0592)The Crafoord Foundation(2021-0550)for research grants.
文摘Recombinant human bone morphogenetic protein-2(rhBMP-2)has been FDA-approved for lumbar fusion,but supraphysiologic initial burst release due to suboptimal carrier and late excess bone resorption caused by osteoclast activation have limited its clinical usage.One strategy to mitigate the pro-osteoclast side effect of rhBMP-2 is to give systemic bisphosphonates,but it presents challenges with systemic side effects and low local bioavailability.The aim of this in vivo study was to analyze if posterolateral spinal fusion(PLF)could be improved by utilizing a calcium sulfate/hydroxyapatite(CaS/HA)carrier co-delivering rhBMP-2 and zoledronic acid(ZA).Six groups were allocated(CaS/HA,CaS/HA+BMP-2,CaS/HA+systemic ZA,CaS/HA+local ZA,CaS/HA+BMP-2+systemic ZA,and CaS/HA+BMP-2+local ZA).10-week-old male Wistar rats,were randomly assigned to undergo L4-L5 PLF with implantation of group-dependent scaffolds.At 3 and 6 weeks,the animals were euthanized for radiography,μCT,histological staining,or biomechanical testing to evaluate spinal fusion.The results demonstrated that the CaS/HA biomaterial alone or in combination with local or systemic ZA didn’t support PLF.However,the delivery of rhBMP-2 significantly promoted PLF.Combining systemic ZA with rhBMP-2 didn’t enhance spinal fusion.Notably,the co-delivery of rhBMP-2 and ZA using the CaS/HA carrier significantly enhanced and accelerated PLF,without inhibiting systemic bone turnover,and potentially reduced the dose of rhBMP-2.Together,the treatment regimen of CaS/HA biomaterial co-delivering rhBMP-2 and ZA could potentially be a safe and cost-effective off-the-shelf bioactive bone substitute to enhance spinal fusion.
基金financially supported by the Shanghai Foundation of Excellent Young University Teachersthe Science and Technology Commission of Shanghai Municipality(13ZR1415100,13JC1402700,14195800600)the Science and Technology Development Fund of Pudong New Area(PKJ2012-C05)
文摘Calcium sulfate hemihydrate (CSH) whiskers were synthesized by phase transition in CaCl2 solution under atmospheric pressure. Analytical-grade calcium sulfate dihydrate (AR CSD) was used as the raw material for the synthesis of CSH whiskers, according to orthogonal experiments. The effects of reaction tem- perature, AR CSD content, H2SO4 content, and reaction time were investigated, and the crystallization conditions were optimized. The as-prepared CSH whiskers displayed a regular morphology and a highly uniform size, with an aspect ratio of 105, A simulation system was also established by blending various sulfates with AR CSD, to evaluate the effects of impurities in flue gas desulfurization (FGD) gypsum. The main aim was to prepare CSH whiskers directly from FGD gypsum, without any purification, using the optimized conditions. This is a facile potential alternative process for large-scale production of CSH whiskers using abundant FGD gypsum as source materials.
基金the Henan Provincial Natural Science Foundation(122102210431 and 132300410233)for their financial supportthe financial support of the Wall and Materials Innovation Fund of Henan Province(08120043)+1 种基金supported by the Public Welfare Program of Environmental Protection Ministry of China(201409069)the characterization test supported by the Analytical and Testing Center of Huazhong University of Science and Technology(HUST)
文摘Little attention has thus far been paid to the potential effect of solution composition on the hydrothermal crystallization of calcium sulfate whiskers prepared from flue-gas desulfurization(FGD) gypsum.When purified FGD gypsum was used as raw material,the morphology and phase structure of the hydrothermal products grown in pure water,H2SO4-H2O,NaCl-H2O,and H2SO4-NaCl-H2O solutions as well as the solubility of purified FGD gypsum in these solutions were investigated.The results indicate that calcium sulfate whiskers grow favorably in the H2SO4-NaCl-H2O system.When prepared using 10-70 g NaCl/kg gypsum-0.01 M H2SO4-H2O at 130 ℃ for 60 min,the obtained calcium sulfate whiskers had diameters ranging from 3 to 5 |xm and lengths from 200 to 600 |xm,and their phase structure was calcium sulfate hemihydrate(HH).Opposing effects of sulfuric acid and sodium chloride on the solubility of the purified FGD gypsum were observed.With the co-presence of sulfuric acid and sodium chloride in the reaction solution,the concentrations of Ca2+ and SO42- can be kept relatively stable,which implies that the crystallization of the hydrothermal products can be controlled by changing the concentrations of sulfuric acid and sodium chloride.
基金supported by the National Science Foundation of China(No.51234003,No.51174125 and No.51374138)National Hi-Tech Research and Development Program of China(863 Program,2012AA061602)
文摘The influence of Na2HPO4·12H2O on the hydrothermal formation of hemihydrate calcium sulfate(CaSO4·0.5H2O) whiskers from dihydrate calcium sulfate(CaSO4·2H2O)at 135 ℃ was investigated.Experimental results indicate that the addition of phosphorus accelerates the hydrothermal conversion of CaSO4·2H2O to CaSO4·0.5H2O via the formation of Ca3(PO4)2 and produces CaSO4-0.5H2O whiskers with thinner diameters and shorter lengths.Compared with the blank experiment without Na2HPO4·12H2O,the existence of minor amounts(8.65 ×10-4-4.36 × 10-3 mol/L) of Na2HPO4·12H2O led to a decrease in the diameter of CaSO4·0.5H2O whiskers from 1.0-10.0 to 0.5-2.0 μm and lengths from 70-300 to50-200 μm.
文摘Background Cavity reconstruction after benign bone tumor removal is varied and controversial.AIIograft is widely used but is associated with complications.New bone substitutes,such as calcium sulfate artificial bone,have been introduced for bone tumor operation.However,the bone healing response of artificial bone has not been compared with allograft bone.We therefore compared calcium sulfate grafts (study group) with bone allografts (control group) for the treatment of benign bone tumors.Methods We retrospectively reviewed 50 patients who underwent calcium sulfate reconstruction and 50 patients who underwent allograft cancellous bone reconstruction.The two groups were well matched.The mean follow-up time of the study group was 19.9 (12-55) months.We investigated bone healing response,complications,and factors affecting bone healing.Results At the last follow-up,84% (42/50) of cases in the study group and 62% (31/50) of cases in the control group had achieved clinical healing (P=0.013).The initial healing rate showed no significant difference between the two groups (100% vs.96%,P=0.153).The mean healing times for calcium sulfate and allograft bone were 9.6 (3-42) months and 13.8 (3-36) months,respectively (P <0.01).Complications in the study group were minor and resolved.Implant volume was a significant factor affecting bone healing.Conclusion The calcium sulfate bone substitute showed a satisfactory healing outcome and safety profile in reconstruction of bone defects after benign bone tumor curettage,especially in smaller cavities.
文摘Background:The treatment for long bone defects has been a hot topic in the field of regenerative medicine.This study aimed to evaluate the therapeutic effects of calcium sulfate (CS) combined with platelet-rich plasma (PRP) on long bone defect restoration.Methods:A radial bone defect model was constructed through an osteotomy using New Zealand rabbits.The rabbits were randomly divided into four groups (n =10 in each group):a CS combined with PRP (CS-PRP) group,a CS group,a PRP group,and a positive (recombinant human bone morphogenetic protein-2) control group.PRP was prepared from autologous blood using a two-step centrifugation process.CS-PRP was obtained by mixing hemihydrate CS with PRP.Radiographs and histologic micrographs were generated.The percentage of bone regenerated bone area in each rabbit was calculated at 10 weeks.One-way analysis of variance was performed in this study.Results:The radiographs and histologic micrographs showed bone restoration in the CS-PRP and positive control groups,while nonunion was observed in the CS and PRP groups.The percentages of bone regenerated bone area in the CS-PRP (84.60 ± 2.87%) and positive control (52.21 ± 4.53%) groups were significantly greater than those in the CS group (12.34 ± 2.17%) and PRP group (16.52 ± 4.22%) (P 〈 0.001).In addition,the bone strength of CS-PRP group (43.l 0 ± 4.10%) was significantly greater than that of the CS group (20.10 ± 3.70%) or PRP group (25.10 ± 2.10%) (P 〈 0.001).Conclusion:CS-PRP functions as an effective treatment for long bone defects through stimulating bone regeneration and enhancing new bone strength.