期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Ginsenoside Rb1 Pretreatment Attenuates Myocardial Ischemia by Reducing Calcium/Calmodulin-Dependent Protein Kinase Ⅱ-Medicated Calcium Release 被引量:5
1
作者 Wen-Jun Zhou Juan-Li Li +5 位作者 Qian-Mei Zhou Fei-Fei Cai Xiao-Le Chen Yi-Yu Lu Ming Zhao Shi-Bing Su 《World Journal of Traditional Chinese Medicine》 2020年第3期284-294,共11页
Objective:The aim of this study was to investigate the protective effects of ginsenoside Rb1 and assess whether these protective effects are related to calcium/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ).Methods:A ... Objective:The aim of this study was to investigate the protective effects of ginsenoside Rb1 and assess whether these protective effects are related to calcium/calmodulin-dependent protein kinaseⅡ(Ca MKⅡ).Methods:A myocardial ischemia(IS)rat.model and a myocardial H9 C2 cell hypoxia model were established.MI was induced by occluding the left anterior descending artery for 120 min.Ginsenoside Rb1(10 mg/kg)was administered 30 min before ischemia induction,and the treatment continued for 7 days.Results:In the rat IS injury model,ginsenoside Rb1 reduced myocardial infarct size,mean left ventricular diastolic pressure,incidence of arrhythmia,and levels of serum creatine kinase,lactate dehydrogenase,and malondialdehyde.However,the mean left ventricular systolic pressure,and maximal rising and falling rates of ventricular pressure(±dp/dtmax)increased.In the myocardial H9 C2 cell hypoxia model,ginsenoside Rb1 reduced intracellular calcium concentrations([Ca2+]i)during hypoxia,and markedly reversed the hypoxia-induced decrease in cell survival.Ginsenoside Rb1 was involved in the downregulation of CaMKⅡand the ryanodine receptor,as well as hypoxia-induced H9 C2 cell survival.Conclusion:The findings of the present study suggest that ginsenoside Rb1 attenuates MI injury in rats,partially through the downregulation of CaMKⅡexpression. 展开更多
关键词 calcium/calmodulin-dependent protein kinase Ginsenoside Rb1 myocardial ischemia ryanodine receptor
原文传递
Decorin Induces Cardiac Hypertrophy by Regulating the CaMKⅡ/MEF-2 Signaling Pathway In Vivo 被引量:3
2
作者 Yan YANG Wei-wei YU +1 位作者 Wen YAN Qin XIA 《Current Medical Science》 SCIE CAS 2021年第5期857-862,共6页
Objective:Cardiac hypertrophy is an adaptive reaction of the heart against cardiac overloading,but continuous cardiac hypertrophy can lead to cardiac remodeling and heart failure.Cardiac hypertrophy is mostly consider... Objective:Cardiac hypertrophy is an adaptive reaction of the heart against cardiac overloading,but continuous cardiac hypertrophy can lead to cardiac remodeling and heart failure.Cardiac hypertrophy is mostly considered reversible,and recent studies have indicated that decorin not only prevents cardiac fibrosis associated with hypertension,but also achieves therapeutic effects by blocking fibrosis-related signaling pathways.However,the mechanism of action of decorin remains unknown and unconfirmed.Methods:We determined the degree of myocardial hypertrophy by measuring the ratios of the heart weight/body weight and left ventricular weight/body weight,histological analysis and immunohistochemistry.Western blotting was performed to detect the expression levels of CaMKⅡ,p-CaMKⅡ and MEF-2 in the heart.Results:Our results confirmed that decorin can regulate the CaMKⅡ/MEF-2 signaling pathway,with inhibition thereof being similar to that of decorin in reducing cardiac hypertrophy.Conclusion:Taken together,the results of the present study showed that decorin induced cardiac hypertrophy by regulating the CaMKⅡ/MEF-2 signaling pathway in vivo,revealing a new therapeutic approach for the prevention of cardiac hypertrophy. 展开更多
关键词 DECORIN cardiac hypertrophy calcium/calmodulin-dependent protein kinase myocyte enhancer factor 2 atrial natriuretic peptide
下载PDF
Changes of learning, memory and levels of CaMKII, CaM mRNA, CREB mRNA in the hippocampus of chronic multiple-stressed rats 被引量:21
3
作者 SUN Chen-you QI Shuang-shuang +5 位作者 LOU Xin-fa SUN Shu-hong WANG Xin DAI Kai-yu HU Si-wang LIU Neng-bao 《Chinese Medical Journal》 SCIE CAS CSCD 2006年第2期140-147,共8页
Background The effect of chronic stress on cognitive functions has been one of the hot topic in neuroscience. But there has been much controversy over its mechanism. Such single stressor applied in the past could not ... Background The effect of chronic stress on cognitive functions has been one of the hot topic in neuroscience. But there has been much controversy over its mechanism. Such single stressor applied in the past could not simulate complicated living circumstances that people confronted with. The aim of this study was to investigate the effects of chronic multiple-stress on learning and memory as well as on the levels of calcium/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ), calmodulin (CAM) mRNA, and cAMP-response element binding protein (CREB) mRNA in the hippocampus of rats. Methods The rats were divided randomly into stressed and control groups. The stressed group was given chronic multiple-stress for 6 weeks to set up a chronic multiple-stressed model. The rats' performance of spatial learning and memory was tested using Morris Water Maze (MWM) and Y-maze. Meanwhile, the expressions of CAMKII, CAM mRNA and CREB mRNA of rats' hippocampus were detected by immunohistochemistry, Western blot and reverse transcription-polymerase chain reaction (RT-PCR), respectively. In addition, the width of synaptic cleft and the thickness of post-synaptic densities (PSD) were observed in the hippocampal CA3 region of rats by electron microscopy. Results After exposure to chronic multiple-stress for 6 weeks, the ability of learning and memory of the stressed group was higher than that of the control group (P〈0.05, P〈0.01). The width of synaptic cleft was smaller and the thickness of PSD was larger in the hippocampal CA3 region of the stressed group than in that of the control group (P〈0.01). The CAMKII immunostaining of the stressed group was stronger than that of the control group in the stratum radiatum and oriens of the hippocampal CA1 and CA3, especially in the stratum oriens. Quantitative analysis indicated that the expression of CAMKII, CAM mRNA, and CREB mRNA in the hippocampus of the stressed group was higher than that of the control group (P〈0.05, P〈0.01). Conclusions The capacity of learning and memory can be enhanced after chronic multiple-stress. The increased levels of CAMKⅡ, CAM mRNA, and CREB mRNA may contribute to the enhancing effect of chronic multiple-stress on learning and memory. 展开更多
关键词 LEARNING MEMORY calcium/calmodulin-dependent protein kinase calmodulin mRNA cAMP-response element binding protein mRNA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部