Two novel organic hole-transporting materials have been synthesized by combination of triphenylamines(TPA) viaπ-conjugated bonds using Wittig reaction.The structures were characterized by NMR,FT-IR and HRMS.The opt...Two novel organic hole-transporting materials have been synthesized by combination of triphenylamines(TPA) viaπ-conjugated bonds using Wittig reaction.The structures were characterized by NMR,FT-IR and HRMS.The optical,electrochemical and thermal properties of the materials were studied in detail.The results show that these two compounds have blue emission,proper HOMO levels and high thermal stability.Furthermore,a quantum chemical calculation on electron distribution of the two compounds was performed, which suggests the current synthesized materials would be promising candidates for hole-transporting materials.展开更多
Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of n...Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears.This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding(CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV(bulk) to indirect 1.17 eV(2L) and four(two) complex, highly anisotropic and layer-dependent hole(electron) pockets in the first Brillouin zone.It also exhibits an extraordinarily high hole mobility(~10~5 cm^2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This ‘‘one-dimen sion-like" few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.展开更多
基金the National Natural Science Foundation ofChina(No21176180)Research Fund for the Doctoral Program of Higher Education of China(No20100032110021) for the financial support
文摘Two novel organic hole-transporting materials have been synthesized by combination of triphenylamines(TPA) viaπ-conjugated bonds using Wittig reaction.The structures were characterized by NMR,FT-IR and HRMS.The optical,electrochemical and thermal properties of the materials were studied in detail.The results show that these two compounds have blue emission,proper HOMO levels and high thermal stability.Furthermore,a quantum chemical calculation on electron distribution of the two compounds was performed, which suggests the current synthesized materials would be promising candidates for hole-transporting materials.
基金supported by the National Natural Science Foundation of China(11274380,91433103,11622437,61674171,and 61761166009)the Fundamental Research Funds for the Central Universities of China and the Research Funds of Renmin University of China(16XNLQ01)+1 种基金The Hong Kong Polytechnic University(G-SB53)J.Q. and C.W. were supported by the Outstanding Innovative Talents Cultivation Funded Programs 2016 and 2017 of Renmin University of China,respectively
文摘Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears.This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding(CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV(bulk) to indirect 1.17 eV(2L) and four(two) complex, highly anisotropic and layer-dependent hole(electron) pockets in the first Brillouin zone.It also exhibits an extraordinarily high hole mobility(~10~5 cm^2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This ‘‘one-dimen sion-like" few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.