Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-par...Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-parameter group. Furthermore, by using a complete discrimination system for polynomial, the classification of all single travelling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More generally, an implicit linear structure in the Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion.展开更多
In this paper, the global existence of classical solution and global attractor for Camassa-Holm type equations with dissipative term are established by using fixed point theorem and a priori estimates.
This article studies one dimensional viscous Camassa-Holm equation with a periodic boundary condition. The existence of the almost periodic solution is investigated by using the Galerkin method.
This article is concerned with the global existence and large time behavior of solutions to the Cauchy problem for a parabolic-elliptic system related to the Camassa-Holm shallow water equation {ut+(u^2/2)x+px=ε...This article is concerned with the global existence and large time behavior of solutions to the Cauchy problem for a parabolic-elliptic system related to the Camassa-Holm shallow water equation {ut+(u^2/2)x+px=εuxx, t〉0,x∈R, -αPxx+P=f(u)+α/2ux^2-1/2u^2, t〉0,x∈R, (E) with the initial data u(0,x)=u0(x)→u±, as x→±∞ (I) Here, u_ 〈 u+ are two constants and f(u) is a sufficiently smooth function satisfying f" (u) 〉 0 for all u under consideration. Main aim of this article is to study the relation between solutions to the above Cauchy problem and those to the Riemann problem of the following nonlinear conservation law It is well known that if u_ 〈 u+, the above Riemann problem admits a unique global entropy solution u^R(x/t) u^R(x/t)={u_,(f′)^-1(x/t),u+, x≤f′(u_)t, f′(u_)t≤x≤f′(u+)t, x≥f′(u+)t. Let U(t, x) be the smooth approximation of the rarefaction wave profile constructed similar to that of [21, 22, 23], we show that if u0(x) - U(0,x) ∈ H^1(R) and u_ 〈 u+, the above Cauchy problem (E) and (I) admits a unique global classical solution u(t, x) which tends to the rarefaction wave u^R(x/t) as → +∞ in the maximum norm. The proof is given by an elementary energy method.展开更多
In this paper, we study the Cauchy problem for the modified Camassa-Holm equation mt + umx + 2ux m = 0, m =(1- δx^2)^2u,u(x, 0) = u0(x) ∈ H^s(R), x ∈ R, t 〉 0,and show that the solution map is not unifor...In this paper, we study the Cauchy problem for the modified Camassa-Holm equation mt + umx + 2ux m = 0, m =(1- δx^2)^2u,u(x, 0) = u0(x) ∈ H^s(R), x ∈ R, t 〉 0,and show that the solution map is not uniformly continuous in Sobolev spaces H^s(R) for s 〉 7/2. Compared with the periodic problem, the non-periodic problem is more difficult,e.g., it depends on the conservation law. Our proof is based on the estimates for the actual solutions and the approximate solutions, which consist of a low frequency and a high frequency part.展开更多
We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the gener...We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the generalized Camassa-Holm Equation: hyperbolic function traveling wave solutions, trigonometric function traveling wave solutions, and rational function traveling wave solutions. At the same time, we have shown graphical behavior of the traveling wave solutions.展开更多
In this paper, the short-wave model equations are investigated, which are associated with the Camassa- Holm (CH) and Degasperis Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of...In this paper, the short-wave model equations are investigated, which are associated with the Camassa- Holm (CH) and Degasperis Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformatioas back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems.展开更多
Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with selfconsistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CH...Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with selfconsistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CHESCS are constructed. The peakon solution, N-soliton, N-cuspon, N-positon, and N-negaton solutions of CHESCS are obtained by using Darboux transformation and the method of variation of constants.展开更多
In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations conve...In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations converges to the solution of the 2D NS equations in the inviscid limit and give the convergence rate of the difference of the solution.展开更多
Any classical non-null solution to the initial boundary value problem of Camassa-Holm equation on finite interval with homogeneous boundary condition must blow up in finite time. An initial boundary value problem of C...Any classical non-null solution to the initial boundary value problem of Camassa-Holm equation on finite interval with homogeneous boundary condition must blow up in finite time. An initial boundary value problem of CamassaHolm equation on half axis is also investigated in this paper. When the initial potential is nonnegative,then the classical solution exists globally; if the derivative of initial data on zero point is nonpositire, then the life span of nonzero solution nmst be finite.展开更多
We investigate the orbital stability of the peakons for a generalized Camassa-Holm equation (gCH). Using variable transformation, a planar dynamical system is obtained from the gCH equation. It is shown that the plana...We investigate the orbital stability of the peakons for a generalized Camassa-Holm equation (gCH). Using variable transformation, a planar dynamical system is obtained from the gCH equation. It is shown that the planar system has two heteroclinic cycles which correspond two peakon solutions. We then prove that the peakons for the gCH equation are orbitally stable by using the method of Constantin and Strauss.展开更多
In this letter, variational homotopy perturbation method (VHPM) has been studied to obtain solitary wave solutions of modified Camassa-Holm and Degasperis-Procesi equations. The results show that the VHPM is suitable ...In this letter, variational homotopy perturbation method (VHPM) has been studied to obtain solitary wave solutions of modified Camassa-Holm and Degasperis-Procesi equations. The results show that the VHPM is suitable for solving nonlinear differential equations with fully nonlinear dispersion term. The travelling wave solution for above equation compared with VIM, HPM, and exact solution. Also, it was shown that the present method is effective, suitable, and reliable for these types of equations.展开更多
In this paper we study a periodic two-component Camassa-Holm equation with generalized weakly dissipation. The local well-posedness of Cauchy problem is investigated by utilizing Kato’s theorem. The blow-up criteria ...In this paper we study a periodic two-component Camassa-Holm equation with generalized weakly dissipation. The local well-posedness of Cauchy problem is investigated by utilizing Kato’s theorem. The blow-up criteria and the blow-up rate are established by applying monotonicity. Finally, the global existence results for solutions to the Cauchy problem of equation are proved by structuring functions.展开更多
The aim of this paper is to study singular dynamics of solutions of Camassa-Holm equation. Based on the semigroup theory of linear operators and Banach contraction mapping principle, we prove the asymptotic stability ...The aim of this paper is to study singular dynamics of solutions of Camassa-Holm equation. Based on the semigroup theory of linear operators and Banach contraction mapping principle, we prove the asymptotic stability of the explicit singular solution of Camassa-Holm equation.展开更多
In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations conve...In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations converges to the solution of the 2D NS equations in the inviscid limit and give the convergence rate of the difference of the solution.展开更多
In this paper, we analyze the generalized Camassa and Holm (CH) equation by the improved element-free Galerkin (IEFG) method. By employing the improved moving least-square (IMLS) approximation, we derive the for...In this paper, we analyze the generalized Camassa and Holm (CH) equation by the improved element-free Galerkin (IEFG) method. By employing the improved moving least-square (IMLS) approximation, we derive the formulas for the generalized CH equation with the IEFG method. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation, and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method, the IEFG method should result in a higher computing speed. The effectiveness of the IEFG method for the generalized CH equation is investigated by numerical examples in this paper.展开更多
文摘Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-parameter group. Furthermore, by using a complete discrimination system for polynomial, the classification of all single travelling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More generally, an implicit linear structure in the Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion.
文摘In this paper, the global existence of classical solution and global attractor for Camassa-Holm type equations with dissipative term are established by using fixed point theorem and a priori estimates.
基金Supported by Natural Science Foundation of China (10471047)Natural Science Foundation of Guangdong Province (05300162)
文摘This article studies one dimensional viscous Camassa-Holm equation with a periodic boundary condition. The existence of the almost periodic solution is investigated by using the Galerkin method.
基金supported by two grants from the National Natural Science Foundation of China under contracts 10431060 and 10329101, respectively
文摘This article is concerned with the global existence and large time behavior of solutions to the Cauchy problem for a parabolic-elliptic system related to the Camassa-Holm shallow water equation {ut+(u^2/2)x+px=εuxx, t〉0,x∈R, -αPxx+P=f(u)+α/2ux^2-1/2u^2, t〉0,x∈R, (E) with the initial data u(0,x)=u0(x)→u±, as x→±∞ (I) Here, u_ 〈 u+ are two constants and f(u) is a sufficiently smooth function satisfying f" (u) 〉 0 for all u under consideration. Main aim of this article is to study the relation between solutions to the above Cauchy problem and those to the Riemann problem of the following nonlinear conservation law It is well known that if u_ 〈 u+, the above Riemann problem admits a unique global entropy solution u^R(x/t) u^R(x/t)={u_,(f′)^-1(x/t),u+, x≤f′(u_)t, f′(u_)t≤x≤f′(u+)t, x≥f′(u+)t. Let U(t, x) be the smooth approximation of the rarefaction wave profile constructed similar to that of [21, 22, 23], we show that if u0(x) - U(0,x) ∈ H^1(R) and u_ 〈 u+, the above Cauchy problem (E) and (I) admits a unique global classical solution u(t, x) which tends to the rarefaction wave u^R(x/t) as → +∞ in the maximum norm. The proof is given by an elementary energy method.
基金supported by the National Natural Science Foundation of China(11226159)
文摘In this paper, we study the Cauchy problem for the modified Camassa-Holm equation mt + umx + 2ux m = 0, m =(1- δx^2)^2u,u(x, 0) = u0(x) ∈ H^s(R), x ∈ R, t 〉 0,and show that the solution map is not uniformly continuous in Sobolev spaces H^s(R) for s 〉 7/2. Compared with the periodic problem, the non-periodic problem is more difficult,e.g., it depends on the conservation law. Our proof is based on the estimates for the actual solutions and the approximate solutions, which consist of a low frequency and a high frequency part.
文摘We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the generalized Camassa-Holm Equation: hyperbolic function traveling wave solutions, trigonometric function traveling wave solutions, and rational function traveling wave solutions. At the same time, we have shown graphical behavior of the traveling wave solutions.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10771072, 10735030, and 90718041Shanghai Leading Academic Discipline Project under Grant No.B412
文摘In this paper, the short-wave model equations are investigated, which are associated with the Camassa- Holm (CH) and Degasperis Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformatioas back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems.
基金Supported by the Nationai Basic Research Program of China (973 program) under Grant No. 2007CB814800the National Science Foundation of China under Grant Nos. 10801083 and 10901090
文摘Regarded as the integrable generalization of Camassa-Holm (CH) equation, the CH equation with selfconsistent sources (CHESCS) is derived. The Lax representation of the CHESCS is presented. The conservation laws for CHESCS are constructed. The peakon solution, N-soliton, N-cuspon, N-positon, and N-negaton solutions of CHESCS are obtained by using Darboux transformation and the method of variation of constants.
基金Sponsored by the National Science Foundation of China (10471050, 10772046)Natural Science Foundation of Guangdong Province (7010407)
文摘In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations converges to the solution of the 2D NS equations in the inviscid limit and give the convergence rate of the difference of the solution.
基金Supported by the National Natural Science Founda-tion of China (10131050)
文摘Any classical non-null solution to the initial boundary value problem of Camassa-Holm equation on finite interval with homogeneous boundary condition must blow up in finite time. An initial boundary value problem of CamassaHolm equation on half axis is also investigated in this paper. When the initial potential is nonnegative,then the classical solution exists globally; if the derivative of initial data on zero point is nonpositire, then the life span of nonzero solution nmst be finite.
文摘We investigate the orbital stability of the peakons for a generalized Camassa-Holm equation (gCH). Using variable transformation, a planar dynamical system is obtained from the gCH equation. It is shown that the planar system has two heteroclinic cycles which correspond two peakon solutions. We then prove that the peakons for the gCH equation are orbitally stable by using the method of Constantin and Strauss.
文摘In this letter, variational homotopy perturbation method (VHPM) has been studied to obtain solitary wave solutions of modified Camassa-Holm and Degasperis-Procesi equations. The results show that the VHPM is suitable for solving nonlinear differential equations with fully nonlinear dispersion term. The travelling wave solution for above equation compared with VIM, HPM, and exact solution. Also, it was shown that the present method is effective, suitable, and reliable for these types of equations.
文摘In this paper we study a periodic two-component Camassa-Holm equation with generalized weakly dissipation. The local well-posedness of Cauchy problem is investigated by utilizing Kato’s theorem. The blow-up criteria and the blow-up rate are established by applying monotonicity. Finally, the global existence results for solutions to the Cauchy problem of equation are proved by structuring functions.
文摘The aim of this paper is to study singular dynamics of solutions of Camassa-Holm equation. Based on the semigroup theory of linear operators and Banach contraction mapping principle, we prove the asymptotic stability of the explicit singular solution of Camassa-Holm equation.
基金Sponsored by the National Science Foundation of China (10471050, 10772046) Natural Science Foundation of Guangdong Province (7010407)
文摘In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations converges to the solution of the 2D NS equations in the inviscid limit and give the convergence rate of the difference of the solution.
基金supported by the Natural Science Foundation of Ningbo City,Zhejiang Province,China (Grant Nos. 2012A610038 and 2012A610023)the Natural Science Foundation of Zhejiang Province,China (Grant No. Y6110007)
文摘In this paper, we analyze the generalized Camassa and Holm (CH) equation by the improved element-free Galerkin (IEFG) method. By employing the improved moving least-square (IMLS) approximation, we derive the formulas for the generalized CH equation with the IEFG method. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation, and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method, the IEFG method should result in a higher computing speed. The effectiveness of the IEFG method for the generalized CH equation is investigated by numerical examples in this paper.