Going deep has been the strategy for the sustainable development of the Tahe Oilfield.Following the TS1 well in block 1,which revealed excellent combinations of hydrocarbon generation,migration and accumulation in the...Going deep has been the strategy for the sustainable development of the Tahe Oilfield.Following the TS1 well in block 1,which revealed excellent combinations of hydrocarbon generation,migration and accumulation in the deeper parts of the Tarim Basin,the TS2 well was drilled to learn more about the prospectivity in the deeper parts of the main blocks of the Tahe Oilfield.Seventeen core samples were collected to perform fluid inclusion studies,including petrography,fluorescence microspectrometry,and microthermometry.The results show that the deeper parts of the Tahe Oilfield have a good hydrocarbon potential.The Cambrian source rocks can supply sufficient oil for not only the Cambrian reservoirs,but also for the Lower Ordovician reservoirs.The CambrianOrdovician carbonates reservoirs experienced at least three oil charging events and one late gas charging event.Oil accumulations formed in the early stage of basin evolution were likely destroyed in the late stage with deep burial,tectonic movements,or invasion of hydrothermal fluids.Therefore,the deep hydrocarbon exploration of the Tahe Oilfield,even the whole Tarim Basin,should focus on gas accumulations,although oil accumulations,especially in Cambrian reservoirs,cannot be neglected.展开更多
The Caledonian North Qilian orogenic belt lies between the North China plate and the Qaidam mi-croplates, and resulted from the collision among the Qaidam microplate, mid-Qilian block and the North China plate. The or...The Caledonian North Qilian orogenic belt lies between the North China plate and the Qaidam mi-croplates, and resulted from the collision among the Qaidam microplate, mid-Qilian block and the North China plate. The orogen initiated from the rifting of the Late Proterozoic Rodinia, and then it experi-enced stages of Cambrian rift basin and Ordovician archipelagic oceanic basin, and foreland basin during Silurian to Early-Middle Devonian. The average ratios of Al/(Al+Fe+Mn), Al/(Al+Fe), δ Ce, Lan/Ybn and Lan/Cen from cherts of Cambrian Heicigou Formation are 0.797, 0.627, 1.114, 0.994 and 1.034 re-spectively. In the NAS standardized REE distribution pattern, the cherts from Xiangqianshan is slightly HREE enriched, and the cherts from Ganluci and Shiqingdong are plane. All of these features indicated that Cambrian cherts of the Heicigou Formation originated from a continental margin rift background. On the contrary, the average ratios of Al/(Al+Fe+Mn), Al/(Al+Fe), δ Ce, Lan/Ybn, Lan/Cen of the Ordovician chert from Dakecha, Cuijiadun, Shihuigou, Laohushan, Heicigou, Maomaoshan, Bianmagou, Da-chadaban, Baiquanmen, Jiugequan and Angzanggou, are respectively 0.72, 0.58, 0.99, 1.09 and 0.96 respectively. Their NAS standardized REE distribution patterns of most Ordovician cherts are plane mode or slightly HREE enriched. The REE distribution pattern of few samples of cherts are slightly LREE enriched. Characteristics of sedimentary geochemistry and tectonic evolution demonstrated that the Cambrian-Ordovician cherts, associated with rift, oceanic, island arc and back-arc volcanic rocks, was not formed in a typical abyssal oceanic basin or mid-oceanic ridge. On the contrary, they formed in a deepwater basin of continental margin or a archipelagic ocean tectonic setting. Several Early Paleo-zoic ophiolite belts in North Qilian and adjacent periphery Qaidam microplate imply that an archipelagic ocean during Ordovician existed in the east of Pro-Tethys.展开更多
Biostratigraphically constrained sequences at the Wushi Yingshan and Kalpin Cement Plant sections (Kalpin Region; Tarim Basin) were densely sampled for geochemical studies. Carbonates across the Cambrian-Ordovician bo...Biostratigraphically constrained sequences at the Wushi Yingshan and Kalpin Cement Plant sections (Kalpin Region; Tarim Basin) were densely sampled for geochemical studies. Carbonates across the Cambrian-Ordovician boundary of both sections mainly record negative carbon isotope values. Stable isotope curves show four negative and four positive excursions appearing alternately at the Wushi Yingshan section and five negative alternating with five positive excursions at the Kalpin Cement Plant section. The carbon isotope logs of these two sections are correlated with the international Cambrian-Ordovician boundary key sections: (1) Dayangcha section in China, (2) Green Point section in Canada, (3) Black mountain section in Australia and (4) Lowson Cove section in USA. These correlations suggest that the Cambrian-Ordovician boundary of the Wushi Yingshan section and the Kalpin Cement Plant section can be placed within a particular horizon that also corresponds to the observed biostratigraphic units.展开更多
The Cambrian and Ordovician on the northern Tarim Platform are mainly composed of carbonates. On the basis of detailed outcrop analysis, the sequence stratigraphic system of the Cambrian-Ordovician in the northern Tar...The Cambrian and Ordovician on the northern Tarim Platform are mainly composed of carbonates. On the basis of detailed outcrop analysis, the sequence stratigraphic system of the Cambrian-Ordovician in the northern Tarim Platform is outlined in this paper. Altogether 35 third-order sequences, 12 supersequences, 4 supersequence sets and 2 megasequences are recognized. The characteristics of the major sequence boundaries have been documented with an integrated examination of outcrop, seismic and borehole data, and the ages of these sequence boundaries have been calibrated through the combination of sequence stratigraphy with biostratigraphy. It is discovered that there is good correlation of the sequence stratigraphy of the Cambrian-Ordovician among Tarim, Yangtze and North China platforms. This may illustrate that the development of the Cambrian-Ordovician carbonate sequences in these three platforms is mainly controlled by regional or global sea level changes. This forms the theoretical basis for the construction of high-resolution chronostratigraphic system of the Cambrian-Ordovician in the three platforms in China.展开更多
That the contents and compositions of trace elements, especially REE in sedimentary rock and agustite originating from inarticulate brachiopods, conodont, etc. change in the vertical direction usually has a close rela...That the contents and compositions of trace elements, especially REE in sedimentary rock and agustite originating from inarticulate brachiopods, conodont, etc. change in the vertical direction usually has a close relation with the stratigraphic boundary of important biologies. This paper systematically analyses REE and 16 trace elements such as U, Th, Sr, Ba, Co, Ni, Cr, V, Cu, Pb, Zn, Sc, Au, As in sedimentary rocks and the agustite on the standard stratified section of the Cambrian-Ordovician Boundary in Dayangcha, Huniiang, Jilin Province. Based on this, the authors investigate the REE distribution pattern and the law of the contents and compositions of trace elements changing, providing the geochemical evidence for building stratified sections of the Cambrian-Ordovician boundary and discussing sedimentary environments.展开更多
Marine source rocks are considered to be mainly composed of the Cambrian-Ordovician deposit in Tarim Basin. Based on the previous studies made by other researchers, the authors calculated the thickness and distributio...Marine source rocks are considered to be mainly composed of the Cambrian-Ordovician deposit in Tarim Basin. Based on the previous studies made by other researchers, the authors calculated the thickness and distribution scale of these Cambrian-Ordovician source rocks by integrating sequence stratigraphy with investigations on sedimentary environments, well-shooting demarcating and calibrating the thickness of unknown source rocks with the thickness of the known ones according to characteristics of the source rocks that have "double track" seismic lineup reflectance. The results showed that the distribution area of the Lower-Cambrian Yuertusi Fm. source rock in platform inner depressions, slopes and deep basins is much bigger than that of the Middle Cambrian evaporite-lagoon source rock. Moreover, the former is superior to the latter in terms of the source rock quality. Likewise, the Middle-Ordovician Heituao Fm. source rock in the slopes and deep basins has a much wider distribution and better quality than the Upper Ordovician, and its quality is also better than those of the Shaergan and Yinggan Fms. source rock within platforms as well as the lime-mud-mound source rock along the fringe of the Upper-Ordovician platform. Most good Lower-Cambrian source rocks of the Kalpin outcrop lie on the initial ingression surface or in the condensed member of the Type I sequence. In this section, the source rock in Type II is inferior to that in Type I, even being far from an effective one (TOC: <0.5%). Likewise, the good Middle-Ordovician Heituao source rock also lies on the initial ingression surface or in the condensed member of the Type I sequence, while the poor Yinggan source rock and the lime-mud-mound along the fringe of the platform develop all in the Type II sequence. Under the condition of the same sea-level rising altitude and time, the ingression displacement (S1) at the base border in Type I is larger than S2 in Type II. Thus, the distribution of the source rock developed above the base border in Type I is wider than that in Type II. The maximal ingression range dominates the ultimate distribution of source rocks. Because S1 is greater than S2, the relative rate of ingression on the base border of Type I is obviously bigger than that of Type II. The difference in ingression rate is one of the factors that lead to the superiority of the source rock at the base border in Type I to that Type II . Therefore, it is of great significance to study the spatial distribution, developing era and quality determination of source rocks by means of sequence stratigrahpy.展开更多
Whole-rock Sm-Nd isotopes were investigated for Cambrian-Ordovician strata from the Jinggangshan area between the Yangtze Block and Cathysia Block in South China. These strata were deposited as a greatly thick unit of...Whole-rock Sm-Nd isotopes were investigated for Cambrian-Ordovician strata from the Jinggangshan area between the Yangtze Block and Cathysia Block in South China. These strata were deposited as a greatly thick unit of muddy-sandy laminas with intercalated carbonate and organic carbon-bearing layers. They have low εNd(t) values of –13.9 to –7.9 and old Nd model ages of 1842 to 2375 Ma. In tDM-tStr diagram, they are far away from the concordant line but fall within the evolution zone of the Proterozoic crust of South China. This indicates that the Cambrian-Ordovician strata are mainly composed of mat- ters eroded from ancient Paleoproterozoic crust that may mainly consist of continental-derived detrital sediments with high maturity in the Cathysia Block. However, the Ordovician Jueshangou Formation and Dui’ershi Formation have εNd(t) values of –10.5 and –7.9 at the higher end of the above range and Nd model ages of 1842 to 2059 Ma at the lower end of the above range. This suggests involvement of more detritus that were eroded from the relatively juvenile crust from Late Paleoproterozoic to the Early Neoproterozoic. All the Nd model ages for the Cambrian-Ordovician sedimentary rocks in the Cathysia Block and the southeastern margin of the Yangtze Block are older than 1800 Ma, suggesting that no material from the Early Paleozoic depleted mantle-derived magmas was involved in these regions.展开更多
基金supported by National Basic Research Program of China(Grant No.2012CB214804)the Fundamental Research Funds for the Central Universities, China University of Geosciences(Wuhan)(Grant No. cug130104)
文摘Going deep has been the strategy for the sustainable development of the Tahe Oilfield.Following the TS1 well in block 1,which revealed excellent combinations of hydrocarbon generation,migration and accumulation in the deeper parts of the Tarim Basin,the TS2 well was drilled to learn more about the prospectivity in the deeper parts of the main blocks of the Tahe Oilfield.Seventeen core samples were collected to perform fluid inclusion studies,including petrography,fluorescence microspectrometry,and microthermometry.The results show that the deeper parts of the Tahe Oilfield have a good hydrocarbon potential.The Cambrian source rocks can supply sufficient oil for not only the Cambrian reservoirs,but also for the Lower Ordovician reservoirs.The CambrianOrdovician carbonates reservoirs experienced at least three oil charging events and one late gas charging event.Oil accumulations formed in the early stage of basin evolution were likely destroyed in the late stage with deep burial,tectonic movements,or invasion of hydrothermal fluids.Therefore,the deep hydrocarbon exploration of the Tahe Oilfield,even the whole Tarim Basin,should focus on gas accumulations,although oil accumulations,especially in Cambrian reservoirs,cannot be neglected.
基金Sponsored by the National Natural Science Foundation of China (Grant Nos. 40672080 and 40621002)the Developing Plan of Innovation Group of Ministry of Education of China (Grant No. IRT0546)
文摘The Caledonian North Qilian orogenic belt lies between the North China plate and the Qaidam mi-croplates, and resulted from the collision among the Qaidam microplate, mid-Qilian block and the North China plate. The orogen initiated from the rifting of the Late Proterozoic Rodinia, and then it experi-enced stages of Cambrian rift basin and Ordovician archipelagic oceanic basin, and foreland basin during Silurian to Early-Middle Devonian. The average ratios of Al/(Al+Fe+Mn), Al/(Al+Fe), δ Ce, Lan/Ybn and Lan/Cen from cherts of Cambrian Heicigou Formation are 0.797, 0.627, 1.114, 0.994 and 1.034 re-spectively. In the NAS standardized REE distribution pattern, the cherts from Xiangqianshan is slightly HREE enriched, and the cherts from Ganluci and Shiqingdong are plane. All of these features indicated that Cambrian cherts of the Heicigou Formation originated from a continental margin rift background. On the contrary, the average ratios of Al/(Al+Fe+Mn), Al/(Al+Fe), δ Ce, Lan/Ybn, Lan/Cen of the Ordovician chert from Dakecha, Cuijiadun, Shihuigou, Laohushan, Heicigou, Maomaoshan, Bianmagou, Da-chadaban, Baiquanmen, Jiugequan and Angzanggou, are respectively 0.72, 0.58, 0.99, 1.09 and 0.96 respectively. Their NAS standardized REE distribution patterns of most Ordovician cherts are plane mode or slightly HREE enriched. The REE distribution pattern of few samples of cherts are slightly LREE enriched. Characteristics of sedimentary geochemistry and tectonic evolution demonstrated that the Cambrian-Ordovician cherts, associated with rift, oceanic, island arc and back-arc volcanic rocks, was not formed in a typical abyssal oceanic basin or mid-oceanic ridge. On the contrary, they formed in a deepwater basin of continental margin or a archipelagic ocean tectonic setting. Several Early Paleo-zoic ophiolite belts in North Qilian and adjacent periphery Qaidam microplate imply that an archipelagic ocean during Ordovician existed in the east of Pro-Tethys.
基金the Tarim Oilfield Company, PetroChina, the Innovating Foundation of Research Institute of Petroleum Exploration & Development, PetroChina and the Outstanding Doctoral Dissertation Support Foundation of China University of Geo-sciences (Beijing)
文摘Biostratigraphically constrained sequences at the Wushi Yingshan and Kalpin Cement Plant sections (Kalpin Region; Tarim Basin) were densely sampled for geochemical studies. Carbonates across the Cambrian-Ordovician boundary of both sections mainly record negative carbon isotope values. Stable isotope curves show four negative and four positive excursions appearing alternately at the Wushi Yingshan section and five negative alternating with five positive excursions at the Kalpin Cement Plant section. The carbon isotope logs of these two sections are correlated with the international Cambrian-Ordovician boundary key sections: (1) Dayangcha section in China, (2) Green Point section in Canada, (3) Black mountain section in Australia and (4) Lowson Cove section in USA. These correlations suggest that the Cambrian-Ordovician boundary of the Wushi Yingshan section and the Kalpin Cement Plant section can be placed within a particular horizon that also corresponds to the observed biostratigraphic units.
基金This project was jointly supported by the Ministry of Science and Technology of China (GrantNo. G1999043304) and the Key Project "SSER" for basic studies (Grant No. 95-04). The authors are grateful to Prof. Wang Hongzhen and Prof. Yue Changshuo for the
文摘The Cambrian and Ordovician on the northern Tarim Platform are mainly composed of carbonates. On the basis of detailed outcrop analysis, the sequence stratigraphic system of the Cambrian-Ordovician in the northern Tarim Platform is outlined in this paper. Altogether 35 third-order sequences, 12 supersequences, 4 supersequence sets and 2 megasequences are recognized. The characteristics of the major sequence boundaries have been documented with an integrated examination of outcrop, seismic and borehole data, and the ages of these sequence boundaries have been calibrated through the combination of sequence stratigraphy with biostratigraphy. It is discovered that there is good correlation of the sequence stratigraphy of the Cambrian-Ordovician among Tarim, Yangtze and North China platforms. This may illustrate that the development of the Cambrian-Ordovician carbonate sequences in these three platforms is mainly controlled by regional or global sea level changes. This forms the theoretical basis for the construction of high-resolution chronostratigraphic system of the Cambrian-Ordovician in the three platforms in China.
文摘That the contents and compositions of trace elements, especially REE in sedimentary rock and agustite originating from inarticulate brachiopods, conodont, etc. change in the vertical direction usually has a close relation with the stratigraphic boundary of important biologies. This paper systematically analyses REE and 16 trace elements such as U, Th, Sr, Ba, Co, Ni, Cr, V, Cu, Pb, Zn, Sc, Au, As in sedimentary rocks and the agustite on the standard stratified section of the Cambrian-Ordovician Boundary in Dayangcha, Huniiang, Jilin Province. Based on this, the authors investigate the REE distribution pattern and the law of the contents and compositions of trace elements changing, providing the geochemical evidence for building stratified sections of the Cambrian-Ordovician boundary and discussing sedimentary environments.
基金the PetroChina Scientific Research & Technological Development (Grant No. G19990433)
文摘Marine source rocks are considered to be mainly composed of the Cambrian-Ordovician deposit in Tarim Basin. Based on the previous studies made by other researchers, the authors calculated the thickness and distribution scale of these Cambrian-Ordovician source rocks by integrating sequence stratigraphy with investigations on sedimentary environments, well-shooting demarcating and calibrating the thickness of unknown source rocks with the thickness of the known ones according to characteristics of the source rocks that have "double track" seismic lineup reflectance. The results showed that the distribution area of the Lower-Cambrian Yuertusi Fm. source rock in platform inner depressions, slopes and deep basins is much bigger than that of the Middle Cambrian evaporite-lagoon source rock. Moreover, the former is superior to the latter in terms of the source rock quality. Likewise, the Middle-Ordovician Heituao Fm. source rock in the slopes and deep basins has a much wider distribution and better quality than the Upper Ordovician, and its quality is also better than those of the Shaergan and Yinggan Fms. source rock within platforms as well as the lime-mud-mound source rock along the fringe of the Upper-Ordovician platform. Most good Lower-Cambrian source rocks of the Kalpin outcrop lie on the initial ingression surface or in the condensed member of the Type I sequence. In this section, the source rock in Type II is inferior to that in Type I, even being far from an effective one (TOC: <0.5%). Likewise, the good Middle-Ordovician Heituao source rock also lies on the initial ingression surface or in the condensed member of the Type I sequence, while the poor Yinggan source rock and the lime-mud-mound along the fringe of the platform develop all in the Type II sequence. Under the condition of the same sea-level rising altitude and time, the ingression displacement (S1) at the base border in Type I is larger than S2 in Type II. Thus, the distribution of the source rock developed above the base border in Type I is wider than that in Type II. The maximal ingression range dominates the ultimate distribution of source rocks. Because S1 is greater than S2, the relative rate of ingression on the base border of Type I is obviously bigger than that of Type II. The difference in ingression rate is one of the factors that lead to the superiority of the source rock at the base border in Type I to that Type II . Therefore, it is of great significance to study the spatial distribution, developing era and quality determination of source rocks by means of sequence stratigrahpy.
基金Supported by National Natural Science Foundation of China (Grant Nos. 40634022 and 40572118)the Project of Ministry of Education of China (Grant No. 20060284008)
文摘Whole-rock Sm-Nd isotopes were investigated for Cambrian-Ordovician strata from the Jinggangshan area between the Yangtze Block and Cathysia Block in South China. These strata were deposited as a greatly thick unit of muddy-sandy laminas with intercalated carbonate and organic carbon-bearing layers. They have low εNd(t) values of –13.9 to –7.9 and old Nd model ages of 1842 to 2375 Ma. In tDM-tStr diagram, they are far away from the concordant line but fall within the evolution zone of the Proterozoic crust of South China. This indicates that the Cambrian-Ordovician strata are mainly composed of mat- ters eroded from ancient Paleoproterozoic crust that may mainly consist of continental-derived detrital sediments with high maturity in the Cathysia Block. However, the Ordovician Jueshangou Formation and Dui’ershi Formation have εNd(t) values of –10.5 and –7.9 at the higher end of the above range and Nd model ages of 1842 to 2059 Ma at the lower end of the above range. This suggests involvement of more detritus that were eroded from the relatively juvenile crust from Late Paleoproterozoic to the Early Neoproterozoic. All the Nd model ages for the Cambrian-Ordovician sedimentary rocks in the Cathysia Block and the southeastern margin of the Yangtze Block are older than 1800 Ma, suggesting that no material from the Early Paleozoic depleted mantle-derived magmas was involved in these regions.