In order to solve the problem of poor fusion between the spots of deformation camouflage and the background,a small-spot deformation camouflage design algorithm based on background texture matching is proposed in this...In order to solve the problem of poor fusion between the spots of deformation camouflage and the background,a small-spot deformation camouflage design algorithm based on background texture matching is proposed in this research.The combination of spots and textures improved the fusion of the spot pattern and the background.An adversarial autoencoder convolutional network was designed to extract background texture features.The image adversarial loss was added and the reconstruction loss was improved to improve the clarity of the generated texture pattern and the generalization ability of the model.The digital camouflage was formed by obtaining the mean value of the square area and replacing the main color.At the same time,the spots in the square area with a side length of 2 s were subjected to simple linear iterative clustering to form irregular small-spot camouflage.A dataset with a scale of 1050 was established in the experiment.The training results of three different loss functions were investigated.The results showed that the proposed loss function could enhance the generalization of the model and improve the quality of the generated texture image.A variety of digital camouflages with main colors and irregular small-spot camouflage were generated,and their efficiency was tested.On the one hand,intuitive evaluation was given by personnel observing the camouflage pattern embedded in the background and its contour map calculated by the canny operator.On the other hand,objective comparison result was formed by calculating the 4 evaluation indexes between the camouflage pattern and the background.Both results showed that the generated pattern had a high degree of fusion with the background.This model could balance the relationship between the spot size,the number of main colors and the actual effect according to actual needs.展开更多
A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering ...A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering spatial mapping.First,the clustering sample space was mapped from the image pixels to the quantized color space,and several methods were adopted to compress the amount of clustering samples.Then,an improved pedigree clustering algorithm was applied to obtain the initial class centers.Finally,CIQFCM clustering algorithm was used for quick extraction of dominant colors of background image.After theoretical analysis of the effect and efficiency of the CIQFCM algorithm,several experiments were carried out to discuss the selection of proper quantization intervals and to verify the effect and efficiency of the CIQFCM algorithm.The results indicated that the value of quantization intervals should be set to 4,and the proposed algorithm could improve the clustering efficiency while maintaining the clustering effect.In addition,as the image size increased from 128×128 to 1024×1024,the efficiency improvement of CIQFCM algorithm was increased from 6.44 times to 36.42 times,which demonstrated the significant advantage of CIQFCM algorithm in dominant colors extraction of large-size images.展开更多
基金funded by Natural Science Foundation of Jiangsu Province,China,grant number is BK20180579。
文摘In order to solve the problem of poor fusion between the spots of deformation camouflage and the background,a small-spot deformation camouflage design algorithm based on background texture matching is proposed in this research.The combination of spots and textures improved the fusion of the spot pattern and the background.An adversarial autoencoder convolutional network was designed to extract background texture features.The image adversarial loss was added and the reconstruction loss was improved to improve the clarity of the generated texture pattern and the generalization ability of the model.The digital camouflage was formed by obtaining the mean value of the square area and replacing the main color.At the same time,the spots in the square area with a side length of 2 s were subjected to simple linear iterative clustering to form irregular small-spot camouflage.A dataset with a scale of 1050 was established in the experiment.The training results of three different loss functions were investigated.The results showed that the proposed loss function could enhance the generalization of the model and improve the quality of the generated texture image.A variety of digital camouflages with main colors and irregular small-spot camouflage were generated,and their efficiency was tested.On the one hand,intuitive evaluation was given by personnel observing the camouflage pattern embedded in the background and its contour map calculated by the canny operator.On the other hand,objective comparison result was formed by calculating the 4 evaluation indexes between the camouflage pattern and the background.Both results showed that the generated pattern had a high degree of fusion with the background.This model could balance the relationship between the spot size,the number of main colors and the actual effect according to actual needs.
文摘A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering spatial mapping.First,the clustering sample space was mapped from the image pixels to the quantized color space,and several methods were adopted to compress the amount of clustering samples.Then,an improved pedigree clustering algorithm was applied to obtain the initial class centers.Finally,CIQFCM clustering algorithm was used for quick extraction of dominant colors of background image.After theoretical analysis of the effect and efficiency of the CIQFCM algorithm,several experiments were carried out to discuss the selection of proper quantization intervals and to verify the effect and efficiency of the CIQFCM algorithm.The results indicated that the value of quantization intervals should be set to 4,and the proposed algorithm could improve the clustering efficiency while maintaining the clustering effect.In addition,as the image size increased from 128×128 to 1024×1024,the efficiency improvement of CIQFCM algorithm was increased from 6.44 times to 36.42 times,which demonstrated the significant advantage of CIQFCM algorithm in dominant colors extraction of large-size images.