The phenomenon of nutrient maximums at 70~200 m occurred only in the regionof the Canada Basin among the world oceans. The prevailing hypothesis was that the direct injectionof the low-temperature high-nutrient brine...The phenomenon of nutrient maximums at 70~200 m occurred only in the regionof the Canada Basin among the world oceans. The prevailing hypothesis was that the direct injectionof the low-temperature high-nutrient brines from the Chukchi Sea shelf (【 50 m) in winter providedthe nutrient maximums. However, we found that there are five problems in the direct injectionprocess. Formerly Jin et al. considered that the formation of nutrient maximums can be a process oflocally long-term regeneration. Here we propose a regeneration-mixture process. Data of temperature,salinity, oxygen and nutrients were collected at three stations in the southern Canada Basin duringthe summer 1999 cruise. We identified the cores of the surface, near-surface, potential temperaturemaximum waters and Arctic Bottom Water by the diagrams and vertical profiles of salinity, potentialtemperature, oxygen and nutrients. The historical ^(129)I data indicated that the surface andnear-surface waters were Pacific-origin, but the waters below the potential temperature maximum coredepth was Atlantic-origin. Along with the correlation of nutrient maximums and very low oxygencontents in the near-surface water, we hypothesize that, the putative organic matter was decomposedto inorganic nutrients; and the Pacific water was mixed with the Atlantic water in the transitionzone. The idea of the regeneration-mixture process agrees with the historical observations of noapparent seasonal changes, the smooth nutrient profiles, the lowest saturation of CaCO_3 above 400m, low rate of CFC-11 ventilation and ~3H-~3He ages of 8~18 a around the nutrient maximum depths.展开更多
The fractions of river runoff and sea-ice melted water in the Canada Basin in summer 2003 were determined by the salinity-δ18O system. The fraction of river runoff (fR) was high in the upper 50 m of the water colum...The fractions of river runoff and sea-ice melted water in the Canada Basin in summer 2003 were determined by the salinity-δ18O system. The fraction of river runoff (fR) was high in the upper 50 m of the water column and decreased with depth and latitude. The signals of the river runoffwere confined to water depths above 200 m. The total amount of river runoff in the Canada Basin was higher than that in other arctic seas, indicating that the Canada Basin is a main storage region for river runoff. The penetration depth of the sea-ice melted water was less than 50 m to the south of 78°N, while it was about 150 m to the north of 78°N. The total amount of sea-ice melted water was much higher to the north of 78°N than to the south of 78°N, indicating the sea-ice melted waters accumulated on the ice edge. The abundant sea-ice melted water on the ice edge was attributed to the earlier melted water in the southern Canada Basin and transported by the Beaufort Gyre or the reinforced melting of sea ice by solar radiation in the polynya.展开更多
A year-round halocline is a particular hydrographic structure in the upperArctic Ocean. On the basis of an analysis of the hydrographic data collected in the Arctic Ocean, itis found that a double-halocline structure ...A year-round halocline is a particular hydrographic structure in the upperArctic Ocean. On the basis of an analysis of the hydrographic data collected in the Arctic Ocean, itis found that a double-halocline structure exists in the upper layer of the southern Canada Basin,which is absolutely different from the Cold Halocline Layer (CHL) in the Eurasian Basin. ThePacific-origin water is the primary factor in the formation of the double-halocline structure. Theupper halocline lies between the summer modification and the winter modification of thePacific-origin water while the lower halocline results from the Pacific-origin water overlying uponthe Atlantic-origin water. Both haloclines are all the year-round although seasonal and interannualvariations have been detected in the historical data.展开更多
As a conservative tracer, oxygen isotopes in seawater are widely used for water mass analysis, along with temperature and salinity. In this study, seawater oxygen-18 datasets in the Canada Basin during 1967-2010 were ...As a conservative tracer, oxygen isotopes in seawater are widely used for water mass analysis, along with temperature and salinity. In this study, seawater oxygen-18 datasets in the Canada Basin during 1967-2010 were obtained from the four cruises of the Chinese National Arctic Research Expedition (1999, 2003, 2008, and 2010) and the NASA database. Fractions of sea ice meltwater and river runoffwere determined from the salinity-5180 system. Our results showed that the river runoff decreased from the south to the north in the Canada Basin. The enhanced amount of river runoff observed in the southern Canada Basin may originate from the Mackenzie River, transported by the Beaufort Gyre. The river runoff component showed maximum fractions during 1967-1969, 1978-1979, 1984-1985, 1993-1994, and 2008-2010, indicating the refresh time of the river runoffwas 5.0-16.0 a in the Canada Basin. The temporal variation of the river runoffwas related to the change of the Arctic Oscillation (AO) index, suggesting the freshwater stored in the Canada Basin was affected by surface sea ice drift and water mass movement driven by atmospheric circulation.展开更多
The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm ...The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm AIW spreads in the Canada Basin during the observation time through the analysis of the AIW temperature spatial distribution in different periods. The results indicate that by 2006, the entire Canada Basin has almost been covered by the warming AIW. In order to study interannual variability of the AIW in the Canada Basin, the Canada Basin is divided into five regions according to the bottom topography. From the interannual variation of AIW temperature in each region, it is shown that a cooling period follows after the warming event in upstream regions. At the Chukchi Abyssal Plain and Chukchi Plateau, upstream of the Arctic Circumpolar Boundary Current (ACBC) in the Canada Basin, the AIW temperature reached maximum and then started to fall respectively in 2000 and 2002. However, the AIW in the Canada Abyssal Plain and Beaufort Sea continues to warm monotonically until the year 2006. Furthermore, it is revealed that there is convergence of the AIW depth in the five different regions of the Canada Basin when the AIW warming occurs during observation time. The difference of AIW depth between the five regions of the Canada Basin is getting smaller and smaller, all approaching 410 m in recent years. The results show that depth convergence is related to the variation of AIW potential density in the Canada Basin.展开更多
Conductivity, temperature and depth (CTD) data from 1993 2010 are used to study water tempera- ture in the upper Canada Basin. There are four kinds of water temperature structures: The remains of the winter convect...Conductivity, temperature and depth (CTD) data from 1993 2010 are used to study water tempera- ture in the upper Canada Basin. There are four kinds of water temperature structures: The remains of the winter convective mixed layer, the near-surface temperature maximum (NSTM), the wind-driven mixed layer, and the advected water under sea ice. The NSTM mainly appears within the conductive mixed layer that forms in winter. Solar heating and surface cooling are two basic factors in the formation of the NSTM. The NSTM can also appear in undisturbed open water, as long as there is surface cooling. Water in open water areas may advect beneath the sea ice. The overlying sea ice cools the surface of the advected water, and a temperature maximum could appear similar to the NSTM. The NSTM mostly occurred at depths 10-30 m because of its deepening and strengthening during smnmer, with highest frequency at 20 m. Two clear stages of interannual variation are identified. Before 2003, most NSTMs were observed in marginal ice zones and open waters, so temperature maxima were usually warmer than 0~C. After 2004, most NSTMs occurred in ice-covered areas, with nmch colder temperature maxima. Average depths of the temperature maxima in most years were about 20 m, except for about 16 m in 2007, which was related to the extreme minimum of ice cover. Average temperatures were around 0.8~C to 1.1~C, but increased to around 0.5~C in 2004, 2007 and 2009, corresponding to reduced sea ice. As a no-ice summer in the Arctic is expected, the NSTM will be warmer with sea ice decline. Most energy absorbed by seawater has been transported to sea ice and the atmosphere. The heat near the NSTM is only the remains of total absorption, and the energy stored in the NSTM is not considerable. However, the NSTM is an important sign of the increasing absorption of solar energy in seawater.展开更多
The Canada Basin (CB) is the largest sub-basin in the Arctic, with the deepest abyssal plain of 3 850 m. The double-diffusive process is the possible passage through which the geothermal energy affects the above iso...The Canada Basin (CB) is the largest sub-basin in the Arctic, with the deepest abyssal plain of 3 850 m. The double-diffusive process is the possible passage through which the geothermal energy affects the above isolated deep waters. With the temperature-salinity-pressure observations in 2003, 500-m-thick transition layers and lower 1 000-m-thick bottom homogenous layers were found below 2 400 m in the central deep CB. Staircases with downward-increasing temperature and salinity are prominent in the transition layers, suggesting the double- diffusive convection in deep CB. The interface of the stairs is about 10 m thick with 0.001-0.002℃ temperature difference, while the thicknesses of the homogenous layers in the steps decrease upward from about 60 to 20 m. The density ratio in the deep central CB is generally smaller than 2, indicating stronger double-diffusive convection than that in the upper ocean of 200-400 m. The heat flux through the deepest staircases in the deep CB varies between 0.014 and 0.031 W/m2, which is one-two orders smaller than the upper double-diffusive heat flux, but comparable to the estimates of geothermal heat flux.展开更多
A combination of 5180 and salinity data was employed to explore the freshwater balance in the Canada Basin in summer 2008. The Arctic river water and Pacific river water were quantitatively distinguished by using diff...A combination of 5180 and salinity data was employed to explore the freshwater balance in the Canada Basin in summer 2008. The Arctic river water and Pacific river water were quantitatively distinguished by using different saline end-members. The fractions of total river water, including the Arctic and Pacific river water, were high in the upper 50 m and decreased with depth as well as increasing latitude. In contrast, the fraction of Pacific river water increased gradually with depth but decreased toward north. The inventory of total river water in the Canada Basin was higher than other arctic seas, indicating that Canada Basin was a main storage region for river water in the Arctic Ocean. The fraction of Arctic river water was higher than Pacific river water in the upper 50 m while the opposite was true below 50 m. As a result, the inventories of Pacific river water were higher than those of Arctic river water, demonstrating that the Pacific inflow through the Bering Strait is the main source of freshwater in the Canada Basin. Both the river water and sea-ice melted water in the permanent ice zone were more abundant than those in the region with sea-ice just melted. The fractions of total river water, Arctic river water, Pacific river water increased northward to the north of 82°N, indicating an additional source of river water in the permanent ice zone of the northern Canada Basin. A possible reason for the extra river water in the permanent ice zone is the lateral advection of shelf waters by the Trans-Polar Drift. The penetration depth of sea-ice melted waters was less than 30 m in the southern Canada Basin, while it extended to 125 m in the northern Canada Basin. The inventory of sea- ice melted water suggested that sea-ice melted waters were also accumulated in the permanent ice zone, attributing to the trap of earlier melted waters in the permanent ice zone via the Beaufort Gyre.展开更多
The third Chinese National Arctic Research Expedition (CHINARE) was conducted in the summer of 2008. During the survey, the surface seawater partial pressure of CO2 (pCO2) was measured, and sea water samples were ...The third Chinese National Arctic Research Expedition (CHINARE) was conducted in the summer of 2008. During the survey, the surface seawater partial pressure of CO2 (pCO2) was measured, and sea water samples were collected for CO2 measurement in the Canada Basin. The distribution of pCO2 in the Canada Basin was determined, the influencing factors were addressed, and the air-sea CO2 flux in the Canada Basin was evaluated. The Canada Basin was divided into three regions: the ice-free zone (south of 77°N), the partially ice-covered zone (77°-80°N), and the heavily ice-covered zone (north of 80°N). In the ice-free zone, pCO2 was high (320 to 368 patm, 1 patm=0.101 325 Pa), primarily due to rapid equilibration with atmospheric CO2 over a short time. In the partially ice-covered zone, the surface pCOs was relatively low (250 to 270 patm) due to ice-edge blooms and icemelt water dilution. In the heavily ice-covered zone, the seawater pCO2 varied between 270 and 300 laatm due to biological COs removal, the transportation of low pCOs water northward, and heavy ice cover. The surface seawater pCO2 during the survey was undersaturated with respect to the atmosphere in the Canada Basin, and it was a net sink for atmospheric CO2. The summertime net CO2 uptake of the ice-free zone, the partially ice-covered zone and the heavily ice-covered zone was (4.14±1.08), (1.79±0.19), and (0.57±0.03) Tg/a (calculated by carbon, 1 Tg=10^12 g), respectively. Overall, the net COs sink of the Canada Basin in the summer of 2008 was (6.5+1.3) Tg/a, which accounted for 4%-10% of the Arctic Ocean COs sink.展开更多
The Beaufort Gyre (BG) was spun up in the last decade which is an important factor in regulating the variation of the upper ocean. The heat content and freshwater content of the upper ocean increased gradually in th...The Beaufort Gyre (BG) was spun up in the last decade which is an important factor in regulating the variation of the upper ocean. The heat content and freshwater content of the upper ocean increased gradually in the Canada Basin, as did momentum input. Both the geostrophic wind curl and freshwater content could contribute to the spin-up of BG. However, even though there is no change of the wind field the increasing freshwater alone could result in the spin-up of BG. In this study we show that the Pacific Water is difficult to flow into the central basin as the BG spins up and the maximum temperature of the Pacific Summer Water (PSW) experienced a dramatic decrease inside the BG in 2005 and 2009 due to a change of flow pathway of PSW. The enhancement of Ekman Pumping (EP) contributed to the deepening of the Pacific Winter Water by piling up more freshwater. This change of water column dynamics has also contributed to the deepening ofthe Atlantic Water core after 2007. The EP decreased significantly in 2012 (indicating a spin down of BG) and the direction of Ekman transport turned to the north, which favoured the release of freshwater that had resided in the basin for years.展开更多
Freshwater content (FWC) in the Arctic Ocean has changed rapidly in recent years, in response to significant decreases in sea ice extent. Research on freshwater content variability in the Canada Basin, the main stor...Freshwater content (FWC) in the Arctic Ocean has changed rapidly in recent years, in response to significant decreases in sea ice extent. Research on freshwater content variability in the Canada Basin, the main storage area of fresh water is very important to understand the input-output freshwater in the Arctic Ocean. The FWC in the Canada Basin was calculated using data from the Chinese National Arctic Research Expeditions of 2003 and 2008, and from expeditions of the Canadian icebreaker Louis S. St-Laurent (LSSL) from 2004 to 2007. Results show that the upper ocean in the Canada Basin became continuously fresher from 2003 to 2008, except during 2006. The FWC increased at a rate of more than 1 m.a-1, and the maximum increase, 7 m, was in the central basin compared between 2003 and 2008. Variability of the FWC was almost entirely limited to the layer above the winter Bering Sea Water (wBSW), below which the FWC remained around 3 m during the study period. Contributors to the FWC increase are generally considered to be net precipitation, runoff changes, Pacific water inflow through the Bering Strait, sea ice extent, and the Arctic Oscillation(AO). However, we determined that the first three contributors did not have apparent impact on the FWC changes. Therefore, this paper focuses on analysis of the latter two factors and the results indicate that they were the major contributors to the FWC variability in the basin.展开更多
The World Ocean Database(WOD) is used to evaluate the halocline depth simulated by an ice-ocean coupled model in the Canada Basin during 1990–2008. Statistical results show that the simulated halocline is reliable....The World Ocean Database(WOD) is used to evaluate the halocline depth simulated by an ice-ocean coupled model in the Canada Basin during 1990–2008. Statistical results show that the simulated halocline is reliable.Comparing of the September sea ice extent between simulation and SSM/I dataset, a consistent interannual variability is found between them. Moreover, both the simulated and observed September sea ice extent show staircase declines in 2000–2008 compared to 1990–1999. That supports that the abrupt variations of the ocean surface stress curl anomaly in 2000–2008 are caused by rapid sea ice melting and also in favor of the realistic existence of the simulated variations. Responses to these changes can be found in the upper ocean circulation and the intermediate current variations in these two phases as well. The analysis shows that seasonal variations of the halocline are regulated by the seasonal variations of the Ekman pumping. On interannual time scale, the variations of the halocline have an inverse relationship with the ocean surface stress curl anomaly after 2000,while this relationship no longer applies in the 1990 s. It is pointed out that the regime shift in the Canada Basin can be derived to illustrate this phenomenon. Specifically, the halocline variations are dominated by advection in the 1990 s and Ekman pumping in the 2000 s respectively. Furthermore, the regime shift is caused by changing Transpolar Drift pathway and Ekman pumping area due to spatial deformation of the center Beaufort high(BH)relative to climatology.展开更多
Summer pack ice biotic community of the Canada Basin was characterized duringthe Second Chinese National Arctic Research Expedition(CHINARE-2003,20 August—5 September 2003).Bacteria,ice algae(diatoms and autotrophic ...Summer pack ice biotic community of the Canada Basin was characterized duringthe Second Chinese National Arctic Research Expedition(CHINARE-2003,20 August—5 September 2003).Bacteria,ice algae(diatoms and autotrophic flagellates)and protozoa(mainly heterotrophicflagellates)were observed throughout the whole ice column.The vertical distribution of biotic taxavaried among sites.The integrated biomass ranged from 48.4 and 58.1 mg/m^(2),with an average of55.2 mg/m^(2).Bacteria were the dominant of the assemblage in pack ice,accounted for 84.1%of theintegrated,and ice algae,which usually dominate the ice biotic community,constituted only 3.5%ofthe total.Considering the quick environmental changes of the Arctic Ocean in recent years,wesuggested that quick melting of pack ice in summer was suggested,which caused such change of packice biotic community.The low salinity throughout the whole ice column and the continuous melting ofthe pack ice cumbered the formation of ice algae bloom in summer,finally resulting in thedominance of microbial food web with bacteria and heterotrophic flagellates as the most obviouscharacteristics.Considering the high ratio of pack ice primary production to the total found inprevious studies,the quick change of pack ice community structure in summer would deeply influencethe marine ecosystem of the high Arctic Ocean.展开更多
Seawater samples were collected in the water column from the Canada Basin aboard RV Xuelong in August 1999. Concentrations of δ; D, δ;18 O, nutrients (NO3 -, PO4 3-, SiO3 2-) and dissolved oxygen were measured, alon...Seawater samples were collected in the water column from the Canada Basin aboard RV Xuelong in August 1999. Concentrations of δ; D, δ;18 O, nutrients (NO3 -, PO4 3-, SiO3 2-) and dissolved oxygen were measured, along with hydrographic parameters (salinity and temperature). Our results showed that the upper layer of the water column was characterized by the occurrence of the upper halocline water (UHW) and the lower halocline water (LHW). The UHW was associated with a salinity of 33.1 (~150m depth) and maximums of nutrients, NO and PO*, whereas minimums of NO and PO* (PO* = PO4 3?+ O2/175?1.95 μmol/dm3) occurred at the depth of LHW (~300m depth). Two tracer systems, S-δ;18O-PO* and S-δ D-SiO3 3-, were used to estimate the fractions of the Atlantic water, Pacific water, river runoff and sea ice meltwater in water samples. Combined with the nutrient ratio NO/PO, it was suggested that the UHW was derived from the in-flow of the Pacific water through the Bering Strait. These waters were modified to obtain the high salinity and nutrients in the Chukchi shelf or/and the east Siberian shelf. The LHW was maintained by inflow of the Atlantic water through Barents Sea and subsequent mixing with freshwater in the shelf region to produce the signals of NO and PO* minimums. In study basin, the river runoff signals were confined to water depths less than 300 m and the fractions of river runoff decreased with the increasing depth. Water column inventories of river runoff and sea ice meltwater were calculated between the surface and 300m. The river runoff inventories in the Canada Basin were higher than those in other sea areas, suggesting that the Canada basin is a major storage region for Arctic river water. The sea ice meltwater signals suggested that the Canada Basin is a region of net sea ice formation and the inventories of net sea ice in the upper water column increasing from the south to the north.展开更多
The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits th...The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits that are economically recoverable for conversion to oil. The major deposits are in three geographic and geologic regions of Alberta: Athabasca, Cold Lake and Peace River. The bitumen reserves have oil gravities ranging from 8 to 12° API, and are hosted in the reservoirs of varying age, ranging from Devonian (Grosmont Formation) to Early Cretaceous (Mannville Group). They were derived from light oils in the southern Alberta and migrated to the north and east for over 100 km during the Laramide Orogeny, which was responsible for the uplift of the Rocky Mountains. Biodegradation is the only process that transforms light oil into bitumen in such a dramatic way that overshadowed other alterations with minor contributions. The levels of biodegradation in the basin increasing from west (non-biodegraded) to east (extremely biodegraded) can be attributed to decreasing reservoir temperature, which played the primary role in controlling the biodegradation regime. Once the reservoir was heated to approximately 80℃, it was pasteurized and no biodegradation would further occur. However, reservoir temperature could not alone predict the variations of the oil composition and physical properties. Compositional gradients and a wide range ofbiodegradation degree at single reservoir column indicate that the water-leg size or the volume ratio of oil to water is one of the critical local controls for the vertical variations ofbiodegradation degree and oil physical properties. Late charging and mixing of the fresh and degraded oils ultimately dictate the final distribution of compositions and physical properties found in the heavy oil and oil sand fields. Oil geochemistry can reveal precisely the processes and levels that control these variations in a given field, which opens the possibility of model-driven prediction of oil properties and sweet spots in reservoirs.展开更多
Several decades of conventional oil and gas production in Western Canada Sedimentary Basin (WCSB) have resulted in maturity of the basin, and attention is shifting to alternative hydrocarbon reservoir system, such as ...Several decades of conventional oil and gas production in Western Canada Sedimentary Basin (WCSB) have resulted in maturity of the basin, and attention is shifting to alternative hydrocarbon reservoir system, such as tight gas reservoir of the Montney Formation, which consists of siltstone with subordinate interlaminated very fine-grained sandstone. The Montney Formation resource play is one of Canada’s prime unconventional hydrocarbon reservoir, with reserve estimate in British Columbia (Natural Gas reserve = 271 TCF), Liquefied Natural Gas (LNG = 12,647 million barrels), and oil reserve (29 million barrels). Based on sedimentological and ichnological criteria, five lithofacies associations were identified in the study interval: Lithofacies F-1 (organic rich, wavy to parallel laminated, black colored siltstone);Lithofacies F-2 (very fine-grained sandstone interbedded with siltstone);Lithofacies F-3A (bioturbated silty-sandstone attributed to the Skolithos ichnofacies);Lithofacies F-3B (bioturbated siltstone attributed to Cruziana ichnofacies);Lithofacies F-4 (dolomitic, very fine-grained sandstone);and Lithofacies F-5 (massive siltstone). The depositional environments interpreted for the Montney Formation in the study area are lower shoreface through proximal offshore to distal offshore settings. Rock-Eval data (hydrogen Index and Oxygen Index) shows that Montney sediments contains mostly gas prone Type III/IV with subordinate Type II kerogen, TOC ranges from 0.39 - 3.54 wt% with a rare spike of 10.9 wt% TOC along the Montney/Doig boundary. Vitrinite reflectance data and Tmax show that thermal maturity of the Montney Formation is in the realm of “peak gas” generation window. Despite the economic significance of the Montney unconventional “resource-play”, however, the location and predictability of the best reservoir interval remain conjectural in part because the lithologic variability of the optimum reservoir lithologies has not been adequately characterized. This study presents lithofacies and ichnofacies analyses of the Montney Formation coupled with Rock-Eval geochemistry to interpret the sedimentology, ichnology, and reservoir potential of the Montney Formation tight gas reservoir in Fort St. John study area (T86N, R23W and T74N, R13W), northeastern British Columbia, western Canada.展开更多
基金supported by the Ministry of Finance of China,organized by the Chinese Arctic and Antarctic Administration(CAA)supported by the National Natu-ral Science Foundation of China under contract Nos 40476003 and 40403013the National“973”Pro-gram of China under contract No.G1999043704.
文摘The phenomenon of nutrient maximums at 70~200 m occurred only in the regionof the Canada Basin among the world oceans. The prevailing hypothesis was that the direct injectionof the low-temperature high-nutrient brines from the Chukchi Sea shelf (【 50 m) in winter providedthe nutrient maximums. However, we found that there are five problems in the direct injectionprocess. Formerly Jin et al. considered that the formation of nutrient maximums can be a process oflocally long-term regeneration. Here we propose a regeneration-mixture process. Data of temperature,salinity, oxygen and nutrients were collected at three stations in the southern Canada Basin duringthe summer 1999 cruise. We identified the cores of the surface, near-surface, potential temperaturemaximum waters and Arctic Bottom Water by the diagrams and vertical profiles of salinity, potentialtemperature, oxygen and nutrients. The historical ^(129)I data indicated that the surface andnear-surface waters were Pacific-origin, but the waters below the potential temperature maximum coredepth was Atlantic-origin. Along with the correlation of nutrient maximums and very low oxygencontents in the near-surface water, we hypothesize that, the putative organic matter was decomposedto inorganic nutrients; and the Pacific water was mixed with the Atlantic water in the transitionzone. The idea of the regeneration-mixture process agrees with the historical observations of noapparent seasonal changes, the smooth nutrient profiles, the lowest saturation of CaCO_3 above 400m, low rate of CFC-11 ventilation and ~3H-~3He ages of 8~18 a around the nutrient maximum depths.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract No.CHINARE2014-03-04-03the National Natural Science Foundation of China under contract No.41125020+1 种基金a special scientific research project for public welfare supported by the State Oceanic Administration under contract No.201105022-4the 4th Chinese Arctic Research Program
文摘The fractions of river runoff and sea-ice melted water in the Canada Basin in summer 2003 were determined by the salinity-δ18O system. The fraction of river runoff (fR) was high in the upper 50 m of the water column and decreased with depth and latitude. The signals of the river runoffwere confined to water depths above 200 m. The total amount of river runoff in the Canada Basin was higher than that in other arctic seas, indicating that the Canada Basin is a main storage region for river runoff. The penetration depth of the sea-ice melted water was less than 50 m to the south of 78°N, while it was about 150 m to the north of 78°N. The total amount of sea-ice melted water was much higher to the north of 78°N than to the south of 78°N, indicating the sea-ice melted waters accumulated on the ice edge. The abundant sea-ice melted water on the ice edge was attributed to the earlier melted water in the southern Canada Basin and transported by the Beaufort Gyre or the reinforced melting of sea ice by solar radiation in the polynya.
基金supported by the National Natural Science Foundation of China under contract Nos 40306005 and 40376007.
文摘A year-round halocline is a particular hydrographic structure in the upperArctic Ocean. On the basis of an analysis of the hydrographic data collected in the Arctic Ocean, itis found that a double-halocline structure exists in the upper layer of the southern Canada Basin,which is absolutely different from the Cold Halocline Layer (CHL) in the Eurasian Basin. ThePacific-origin water is the primary factor in the formation of the double-halocline structure. Theupper halocline lies between the summer modification and the winter modification of thePacific-origin water while the lower halocline results from the Pacific-origin water overlying uponthe Atlantic-origin water. Both haloclines are all the year-round although seasonal and interannualvariations have been detected in the historical data.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE2014-03-04-03 and CHINARE2013-04-03-05the National Natural Science Foundation of China under contract No.41125020+1 种基金the 4th Chinese Arctic Research Programa special scientific research project for public welfare supported by the State Oceanic Administration under contract No.201105022-4
文摘As a conservative tracer, oxygen isotopes in seawater are widely used for water mass analysis, along with temperature and salinity. In this study, seawater oxygen-18 datasets in the Canada Basin during 1967-2010 were obtained from the four cruises of the Chinese National Arctic Research Expedition (1999, 2003, 2008, and 2010) and the NASA database. Fractions of sea ice meltwater and river runoffwere determined from the salinity-5180 system. Our results showed that the river runoff decreased from the south to the north in the Canada Basin. The enhanced amount of river runoff observed in the southern Canada Basin may originate from the Mackenzie River, transported by the Beaufort Gyre. The river runoff component showed maximum fractions during 1967-1969, 1978-1979, 1984-1985, 1993-1994, and 2008-2010, indicating the refresh time of the river runoffwas 5.0-16.0 a in the Canada Basin. The temporal variation of the river runoffwas related to the change of the Arctic Oscillation (AO) index, suggesting the freshwater stored in the Canada Basin was affected by surface sea ice drift and water mass movement driven by atmospheric circulation.
基金The National Natural Science Foundation of China under contract Nos 40631006 and 40876003the Polar Science Youth Innovational Foundation of China under contract No. 20080221the National Key Basic Research Program "973" of China under contract No. 2010CB950301
文摘The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm AIW spreads in the Canada Basin during the observation time through the analysis of the AIW temperature spatial distribution in different periods. The results indicate that by 2006, the entire Canada Basin has almost been covered by the warming AIW. In order to study interannual variability of the AIW in the Canada Basin, the Canada Basin is divided into five regions according to the bottom topography. From the interannual variation of AIW temperature in each region, it is shown that a cooling period follows after the warming event in upstream regions. At the Chukchi Abyssal Plain and Chukchi Plateau, upstream of the Arctic Circumpolar Boundary Current (ACBC) in the Canada Basin, the AIW temperature reached maximum and then started to fall respectively in 2000 and 2002. However, the AIW in the Canada Abyssal Plain and Beaufort Sea continues to warm monotonically until the year 2006. Furthermore, it is revealed that there is convergence of the AIW depth in the five different regions of the Canada Basin when the AIW warming occurs during observation time. The difference of AIW depth between the five regions of the Canada Basin is getting smaller and smaller, all approaching 410 m in recent years. The results show that depth convergence is related to the variation of AIW potential density in the Canada Basin.
基金supported by the Global Change Research Program (Grant no. 2010CB951403)the National Natural Science Foundation of China (Grant no.40631006)
文摘Conductivity, temperature and depth (CTD) data from 1993 2010 are used to study water tempera- ture in the upper Canada Basin. There are four kinds of water temperature structures: The remains of the winter convective mixed layer, the near-surface temperature maximum (NSTM), the wind-driven mixed layer, and the advected water under sea ice. The NSTM mainly appears within the conductive mixed layer that forms in winter. Solar heating and surface cooling are two basic factors in the formation of the NSTM. The NSTM can also appear in undisturbed open water, as long as there is surface cooling. Water in open water areas may advect beneath the sea ice. The overlying sea ice cools the surface of the advected water, and a temperature maximum could appear similar to the NSTM. The NSTM mostly occurred at depths 10-30 m because of its deepening and strengthening during smnmer, with highest frequency at 20 m. Two clear stages of interannual variation are identified. Before 2003, most NSTMs were observed in marginal ice zones and open waters, so temperature maxima were usually warmer than 0~C. After 2004, most NSTMs occurred in ice-covered areas, with nmch colder temperature maxima. Average depths of the temperature maxima in most years were about 20 m, except for about 16 m in 2007, which was related to the extreme minimum of ice cover. Average temperatures were around 0.8~C to 1.1~C, but increased to around 0.5~C in 2004, 2007 and 2009, corresponding to reduced sea ice. As a no-ice summer in the Arctic is expected, the NSTM will be warmer with sea ice decline. Most energy absorbed by seawater has been transported to sea ice and the atmosphere. The heat near the NSTM is only the remains of total absorption, and the energy stored in the NSTM is not considerable. However, the NSTM is an important sign of the increasing absorption of solar energy in seawater.
基金The National Natural Science Foundation of China under contract Nos 41476009,41106012 and 41506018the Science and Technology Program in Higher Education of Guangdong under contract No.2013KJCX0099
文摘The Canada Basin (CB) is the largest sub-basin in the Arctic, with the deepest abyssal plain of 3 850 m. The double-diffusive process is the possible passage through which the geothermal energy affects the above isolated deep waters. With the temperature-salinity-pressure observations in 2003, 500-m-thick transition layers and lower 1 000-m-thick bottom homogenous layers were found below 2 400 m in the central deep CB. Staircases with downward-increasing temperature and salinity are prominent in the transition layers, suggesting the double- diffusive convection in deep CB. The interface of the stairs is about 10 m thick with 0.001-0.002℃ temperature difference, while the thicknesses of the homogenous layers in the steps decrease upward from about 60 to 20 m. The density ratio in the deep central CB is generally smaller than 2, indicating stronger double-diffusive convection than that in the upper ocean of 200-400 m. The heat flux through the deepest staircases in the deep CB varies between 0.014 and 0.031 W/m2, which is one-two orders smaller than the upper double-diffusive heat flux, but comparable to the estimates of geothermal heat flux.
基金The Chinese Polar Environment Comprehensive Investigation&Assessment Program under contract Nos CHINARE2017-03-04-03 and CHINARE2017-04-03-05the Natural Science Foundation of China under contract No.41125020
文摘A combination of 5180 and salinity data was employed to explore the freshwater balance in the Canada Basin in summer 2008. The Arctic river water and Pacific river water were quantitatively distinguished by using different saline end-members. The fractions of total river water, including the Arctic and Pacific river water, were high in the upper 50 m and decreased with depth as well as increasing latitude. In contrast, the fraction of Pacific river water increased gradually with depth but decreased toward north. The inventory of total river water in the Canada Basin was higher than other arctic seas, indicating that Canada Basin was a main storage region for river water in the Arctic Ocean. The fraction of Arctic river water was higher than Pacific river water in the upper 50 m while the opposite was true below 50 m. As a result, the inventories of Pacific river water were higher than those of Arctic river water, demonstrating that the Pacific inflow through the Bering Strait is the main source of freshwater in the Canada Basin. Both the river water and sea-ice melted water in the permanent ice zone were more abundant than those in the region with sea-ice just melted. The fractions of total river water, Arctic river water, Pacific river water increased northward to the north of 82°N, indicating an additional source of river water in the permanent ice zone of the northern Canada Basin. A possible reason for the extra river water in the permanent ice zone is the lateral advection of shelf waters by the Trans-Polar Drift. The penetration depth of sea-ice melted waters was less than 30 m in the southern Canada Basin, while it extended to 125 m in the northern Canada Basin. The inventory of sea- ice melted water suggested that sea-ice melted waters were also accumulated in the permanent ice zone, attributing to the trap of earlier melted waters in the permanent ice zone via the Beaufort Gyre.
基金The National Natural Science Foundation of China(NSFC) under contract Nos 41476173 and 41406221the Chinese Projects for Investigations and Assessments of the Arctic and Ant Arctic under contract Nos CHINARE2012-04-04 and 2012-04-03+1 种基金the Fujian Science and Technology Innovation Leader Project 2016the Scientific Research Foundation of Third Institute of Oceanography,SOA under contract No.2014006
文摘The third Chinese National Arctic Research Expedition (CHINARE) was conducted in the summer of 2008. During the survey, the surface seawater partial pressure of CO2 (pCO2) was measured, and sea water samples were collected for CO2 measurement in the Canada Basin. The distribution of pCO2 in the Canada Basin was determined, the influencing factors were addressed, and the air-sea CO2 flux in the Canada Basin was evaluated. The Canada Basin was divided into three regions: the ice-free zone (south of 77°N), the partially ice-covered zone (77°-80°N), and the heavily ice-covered zone (north of 80°N). In the ice-free zone, pCO2 was high (320 to 368 patm, 1 patm=0.101 325 Pa), primarily due to rapid equilibration with atmospheric CO2 over a short time. In the partially ice-covered zone, the surface pCOs was relatively low (250 to 270 patm) due to ice-edge blooms and icemelt water dilution. In the heavily ice-covered zone, the seawater pCO2 varied between 270 and 300 laatm due to biological COs removal, the transportation of low pCOs water northward, and heavy ice cover. The surface seawater pCO2 during the survey was undersaturated with respect to the atmosphere in the Canada Basin, and it was a net sink for atmospheric CO2. The summertime net CO2 uptake of the ice-free zone, the partially ice-covered zone and the heavily ice-covered zone was (4.14±1.08), (1.79±0.19), and (0.57±0.03) Tg/a (calculated by carbon, 1 Tg=10^12 g), respectively. Overall, the net COs sink of the Canada Basin in the summer of 2008 was (6.5+1.3) Tg/a, which accounted for 4%-10% of the Arctic Ocean COs sink.
基金The Key Project of Chinese Natural Science Foundation under contract No.41330960the National Basic Research Program of China under contract No.2015CB953902the Project of Study on the seasonal halocline and near sea surface temperature maximum in Arctic under contract No.41306196
文摘The Beaufort Gyre (BG) was spun up in the last decade which is an important factor in regulating the variation of the upper ocean. The heat content and freshwater content of the upper ocean increased gradually in the Canada Basin, as did momentum input. Both the geostrophic wind curl and freshwater content could contribute to the spin-up of BG. However, even though there is no change of the wind field the increasing freshwater alone could result in the spin-up of BG. In this study we show that the Pacific Water is difficult to flow into the central basin as the BG spins up and the maximum temperature of the Pacific Summer Water (PSW) experienced a dramatic decrease inside the BG in 2005 and 2009 due to a change of flow pathway of PSW. The enhancement of Ekman Pumping (EP) contributed to the deepening of the Pacific Winter Water by piling up more freshwater. This change of water column dynamics has also contributed to the deepening ofthe Atlantic Water core after 2007. The EP decreased significantly in 2012 (indicating a spin down of BG) and the direction of Ekman transport turned to the north, which favoured the release of freshwater that had resided in the basin for years.
基金supported by the National Natural Science Foundation of China (Grant nos.40631006,40976111)the China's Program for New Century Excellent Talents in University (Grant no.NCET-10-0720)
文摘Freshwater content (FWC) in the Arctic Ocean has changed rapidly in recent years, in response to significant decreases in sea ice extent. Research on freshwater content variability in the Canada Basin, the main storage area of fresh water is very important to understand the input-output freshwater in the Arctic Ocean. The FWC in the Canada Basin was calculated using data from the Chinese National Arctic Research Expeditions of 2003 and 2008, and from expeditions of the Canadian icebreaker Louis S. St-Laurent (LSSL) from 2004 to 2007. Results show that the upper ocean in the Canada Basin became continuously fresher from 2003 to 2008, except during 2006. The FWC increased at a rate of more than 1 m.a-1, and the maximum increase, 7 m, was in the central basin compared between 2003 and 2008. Variability of the FWC was almost entirely limited to the layer above the winter Bering Sea Water (wBSW), below which the FWC remained around 3 m during the study period. Contributors to the FWC increase are generally considered to be net precipitation, runoff changes, Pacific water inflow through the Bering Strait, sea ice extent, and the Arctic Oscillation(AO). However, we determined that the first three contributors did not have apparent impact on the FWC changes. Therefore, this paper focuses on analysis of the latter two factors and the results indicate that they were the major contributors to the FWC variability in the basin.
基金The National Basic Research Program(973 Program)of China under contract No.2015CB953900the National Natural Science Foundation of China under contract No.41330960
文摘The World Ocean Database(WOD) is used to evaluate the halocline depth simulated by an ice-ocean coupled model in the Canada Basin during 1990–2008. Statistical results show that the simulated halocline is reliable.Comparing of the September sea ice extent between simulation and SSM/I dataset, a consistent interannual variability is found between them. Moreover, both the simulated and observed September sea ice extent show staircase declines in 2000–2008 compared to 1990–1999. That supports that the abrupt variations of the ocean surface stress curl anomaly in 2000–2008 are caused by rapid sea ice melting and also in favor of the realistic existence of the simulated variations. Responses to these changes can be found in the upper ocean circulation and the intermediate current variations in these two phases as well. The analysis shows that seasonal variations of the halocline are regulated by the seasonal variations of the Ekman pumping. On interannual time scale, the variations of the halocline have an inverse relationship with the ocean surface stress curl anomaly after 2000,while this relationship no longer applies in the 1990 s. It is pointed out that the regime shift in the Canada Basin can be derived to illustrate this phenomenon. Specifically, the halocline variations are dominated by advection in the 1990 s and Ekman pumping in the 2000 s respectively. Furthermore, the regime shift is caused by changing Transpolar Drift pathway and Ekman pumping area due to spatial deformation of the center Beaufort high(BH)relative to climatology.
基金This work was a part of the project“Second Chinese National Arctic Research Expedition”CHINARE-2003 supported by the Ministry of Finance of China and organized by the Chinese Arctic and Antarctic Administration(CAA)+2 种基金the National Natural Science Foundation of China under contract Nos 40576002 and 40006010the Basic Research Special Project of Ministry of Science and Technology of China under contract No.2003DEB5J057the Oceanic Science Foundation of State Oceanic Administration of China under contract No.2003122.
文摘Summer pack ice biotic community of the Canada Basin was characterized duringthe Second Chinese National Arctic Research Expedition(CHINARE-2003,20 August—5 September 2003).Bacteria,ice algae(diatoms and autotrophic flagellates)and protozoa(mainly heterotrophicflagellates)were observed throughout the whole ice column.The vertical distribution of biotic taxavaried among sites.The integrated biomass ranged from 48.4 and 58.1 mg/m^(2),with an average of55.2 mg/m^(2).Bacteria were the dominant of the assemblage in pack ice,accounted for 84.1%of theintegrated,and ice algae,which usually dominate the ice biotic community,constituted only 3.5%ofthe total.Considering the quick environmental changes of the Arctic Ocean in recent years,wesuggested that quick melting of pack ice in summer was suggested,which caused such change of packice biotic community.The low salinity throughout the whole ice column and the continuous melting ofthe pack ice cumbered the formation of ice algae bloom in summer,finally resulting in thedominance of microbial food web with bacteria and heterotrophic flagellates as the most obviouscharacteristics.Considering the high ratio of pack ice primary production to the total found inprevious studies,the quick change of pack ice community structure in summer would deeply influencethe marine ecosystem of the high Arctic Ocean.
基金This work was supported by the Chinese First Arctic Expedition Foundation.
文摘Seawater samples were collected in the water column from the Canada Basin aboard RV Xuelong in August 1999. Concentrations of δ; D, δ;18 O, nutrients (NO3 -, PO4 3-, SiO3 2-) and dissolved oxygen were measured, along with hydrographic parameters (salinity and temperature). Our results showed that the upper layer of the water column was characterized by the occurrence of the upper halocline water (UHW) and the lower halocline water (LHW). The UHW was associated with a salinity of 33.1 (~150m depth) and maximums of nutrients, NO and PO*, whereas minimums of NO and PO* (PO* = PO4 3?+ O2/175?1.95 μmol/dm3) occurred at the depth of LHW (~300m depth). Two tracer systems, S-δ;18O-PO* and S-δ D-SiO3 3-, were used to estimate the fractions of the Atlantic water, Pacific water, river runoff and sea ice meltwater in water samples. Combined with the nutrient ratio NO/PO, it was suggested that the UHW was derived from the in-flow of the Pacific water through the Bering Strait. These waters were modified to obtain the high salinity and nutrients in the Chukchi shelf or/and the east Siberian shelf. The LHW was maintained by inflow of the Atlantic water through Barents Sea and subsequent mixing with freshwater in the shelf region to produce the signals of NO and PO* minimums. In study basin, the river runoff signals were confined to water depths less than 300 m and the fractions of river runoff decreased with the increasing depth. Water column inventories of river runoff and sea ice meltwater were calculated between the surface and 300m. The river runoff inventories in the Canada Basin were higher than those in other sea areas, suggesting that the Canada basin is a major storage region for Arctic river water. The sea ice meltwater signals suggested that the Canada Basin is a region of net sea ice formation and the inventories of net sea ice in the upper water column increasing from the south to the north.
文摘The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits that are economically recoverable for conversion to oil. The major deposits are in three geographic and geologic regions of Alberta: Athabasca, Cold Lake and Peace River. The bitumen reserves have oil gravities ranging from 8 to 12° API, and are hosted in the reservoirs of varying age, ranging from Devonian (Grosmont Formation) to Early Cretaceous (Mannville Group). They were derived from light oils in the southern Alberta and migrated to the north and east for over 100 km during the Laramide Orogeny, which was responsible for the uplift of the Rocky Mountains. Biodegradation is the only process that transforms light oil into bitumen in such a dramatic way that overshadowed other alterations with minor contributions. The levels of biodegradation in the basin increasing from west (non-biodegraded) to east (extremely biodegraded) can be attributed to decreasing reservoir temperature, which played the primary role in controlling the biodegradation regime. Once the reservoir was heated to approximately 80℃, it was pasteurized and no biodegradation would further occur. However, reservoir temperature could not alone predict the variations of the oil composition and physical properties. Compositional gradients and a wide range ofbiodegradation degree at single reservoir column indicate that the water-leg size or the volume ratio of oil to water is one of the critical local controls for the vertical variations ofbiodegradation degree and oil physical properties. Late charging and mixing of the fresh and degraded oils ultimately dictate the final distribution of compositions and physical properties found in the heavy oil and oil sand fields. Oil geochemistry can reveal precisely the processes and levels that control these variations in a given field, which opens the possibility of model-driven prediction of oil properties and sweet spots in reservoirs.
文摘Several decades of conventional oil and gas production in Western Canada Sedimentary Basin (WCSB) have resulted in maturity of the basin, and attention is shifting to alternative hydrocarbon reservoir system, such as tight gas reservoir of the Montney Formation, which consists of siltstone with subordinate interlaminated very fine-grained sandstone. The Montney Formation resource play is one of Canada’s prime unconventional hydrocarbon reservoir, with reserve estimate in British Columbia (Natural Gas reserve = 271 TCF), Liquefied Natural Gas (LNG = 12,647 million barrels), and oil reserve (29 million barrels). Based on sedimentological and ichnological criteria, five lithofacies associations were identified in the study interval: Lithofacies F-1 (organic rich, wavy to parallel laminated, black colored siltstone);Lithofacies F-2 (very fine-grained sandstone interbedded with siltstone);Lithofacies F-3A (bioturbated silty-sandstone attributed to the Skolithos ichnofacies);Lithofacies F-3B (bioturbated siltstone attributed to Cruziana ichnofacies);Lithofacies F-4 (dolomitic, very fine-grained sandstone);and Lithofacies F-5 (massive siltstone). The depositional environments interpreted for the Montney Formation in the study area are lower shoreface through proximal offshore to distal offshore settings. Rock-Eval data (hydrogen Index and Oxygen Index) shows that Montney sediments contains mostly gas prone Type III/IV with subordinate Type II kerogen, TOC ranges from 0.39 - 3.54 wt% with a rare spike of 10.9 wt% TOC along the Montney/Doig boundary. Vitrinite reflectance data and Tmax show that thermal maturity of the Montney Formation is in the realm of “peak gas” generation window. Despite the economic significance of the Montney unconventional “resource-play”, however, the location and predictability of the best reservoir interval remain conjectural in part because the lithologic variability of the optimum reservoir lithologies has not been adequately characterized. This study presents lithofacies and ichnofacies analyses of the Montney Formation coupled with Rock-Eval geochemistry to interpret the sedimentology, ichnology, and reservoir potential of the Montney Formation tight gas reservoir in Fort St. John study area (T86N, R23W and T74N, R13W), northeastern British Columbia, western Canada.