Cancer cell dormancy(CCD)in colorectal cancer(CRC)poses a significant challenge to effective treatment.In CRC,CCD contributes to tumour recurrence,drug resistance,and amplifying the disease's burden.The molecular ...Cancer cell dormancy(CCD)in colorectal cancer(CRC)poses a significant challenge to effective treatment.In CRC,CCD contributes to tumour recurrence,drug resistance,and amplifying the disease's burden.The molecular mechanisms governing CCD and strategies for eliminating dormant cancer cells remain largely unexplored.Therefore,understanding the molecular mechanisms governing dormancy is crucial for improving patient outcomes and developing targeted therapies.This editorial highlights the complex interplay of signalling pathways and factors involved in colorectal CCD,emphasizing the roles of Hippo/YAP,pluripotent transcription factors such as NANOG,HIF-1αsignalling,and Notch signalling pathways.Additionally,ERK/p38α/β/MAPK pathways,AKT signalling pathway,and Extracellular Matrix Metalloproteinase Inducer,along with some potential less explored pathways such as STAT/p53 switch and canonical and non-canonical Wnt and SMAD signalling,are also involved in promoting colorectal CCD.Highlighting their clinical significance,these findings may offer the potential for identifying key dormancy regulator pathways,improving treatment strategies,surmounting drug resistance,and advancing personalized medicine approaches.Moreover,insights into dormancy mechanisms could lead to the development of predictive biomarkers for identifying patients at risk of recurrence and the tailoring of targeted therapies based on individual dormancy profiles.It is essential to conduct further research into these pathways and their modulation to fully comprehend CRC dormancy mechanisms and enhance patient outcomes.展开更多
Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem,including tumor cells and microenvironment.Breast cancer stem cells(BCSCs)cons...Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem,including tumor cells and microenvironment.Breast cancer stem cells(BCSCs)constitute a small population of cancer cells with unique characteristics,including their capacity for self-renewal and differentiation.Studies have shown that BCSCs not only drive tumorigenesis but also play a crucial role in promoting metastasis in breast cancer.The tumor microenvironment(TME),composed of stromal cells,immune cells,blood vessel cells,fibroblasts,and microbes in proximity to cancer cells,is increasingly recognized for its crosstalk with BCSCs and role in BCSC survival,growth,and dissemination,thereby influencing metastatic ability.Hence,a thorough understanding of BCSCs and the TME is critical for unraveling the mechanisms underlying breast cancer metastasis.In this review,we summarize current knowledge on the roles of BCSCs and the TME in breast cancer metastasis,as well as the underlying regulatory mechanisms.Furthermore,we provide an overview of relevant mouse models used to study breast cancer metastasis,as well as treatment strategies and clinical trials addressing BCSC-TME interactions during metastasis.Overall,this study provides valuable insights for the development of effective therapeutic strategies to reduce breast cancer metastasis.展开更多
Objectives:This study aimed to reveal the role and possible mechanism of the ubiquitin-conjugating enzyme 2T(UBE2T)in the biological activities of breast cancer stem cells(BCSCs).Methods:The specific protein and gene ...Objectives:This study aimed to reveal the role and possible mechanism of the ubiquitin-conjugating enzyme 2T(UBE2T)in the biological activities of breast cancer stem cells(BCSCs).Methods:The specific protein and gene expression were quantified by Western blotting and quantitative real-time polymerase chain reaction,the proportion of BCSCs was examined by flow cytometry,and the self-renewal and proliferation of BCSCs were verified by serial sphere formation and soft agar.Results:Increasing expression of UBE2T was drastically found in breast cancer than that in adjacent tissues.Furthermore,UBE2T overexpression significantly increased the proportion of BCSCs in breast cancer cells and promoted their self-renewal and proliferation.Silent UBE2T exhibited the opposite functions.UBE2T increased the levels of the mammalian target of rapamycin and the phosphorylated mammalian target of rapamycin.Mammalian target of rapamycin(mTOR)inhibitor rapamycin inhibited the function of UBE2T in BCSCs.Conclusion:UBE2T plays a role in BCSCs through mTOR pathway and may suggest a novel therapeutic strategy for breast cancer.展开更多
The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the tre...The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies.As a class of drugs widely used in clinical tumor immunotherapy,ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system.The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly.The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs.ICIs can regulate the phenotypic function of TAMs,and TAMs can also affect the tolerance of colorectal cancer to ICI therapy.TAMs play an important role in ICI resistance,and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.展开更多
Clear cell sarcoma(CCS)is a type of malignant tumor that can arise from tendons and aponeuroses.This malignant proliferation of cells with melanocytic lineage normally occurs in young patients,and it is normally ident...Clear cell sarcoma(CCS)is a type of malignant tumor that can arise from tendons and aponeuroses.This malignant proliferation of cells with melanocytic lineage normally occurs in young patients,and it is normally identified in extremities.However,different sites including gastrointestinal organs are also described.Due difficulties in the molecular and histopathology evaluation,the diagnosis is often confused with malignant melanoma.Most cases are treated with surgical resection,but overall,the prognosis is poor.In this editorial,we will discuss a very interesting case of CCS identified in the pancreas.We will discuss the literature and controversies in the management of this type of cancer.Furthermore,we will address molecular strategies to be incorporated in those cases to better understand the primary location of the tumor.Finally,future perspectives of the field and new strategies of treatment will be described.展开更多
BACKGROUND Bevacizumab,an anti-vascular endothelial growth factor(VEGF)monoclonal antibody,inhibits angiogenesis and reduces tumor growth.Serum VEGF-C,lactate dehydrogenase,and inflammatory markers have been reported ...BACKGROUND Bevacizumab,an anti-vascular endothelial growth factor(VEGF)monoclonal antibody,inhibits angiogenesis and reduces tumor growth.Serum VEGF-C,lactate dehydrogenase,and inflammatory markers have been reported as predictive markers related to bevacizumab treatment.Programmed cell death ligand 1(PD-L1)could act upon VEGF receptor 2 to induce cancer cell angiogenesis and metastasis.AIM To investigate the efficacy of bevacizumab-containing chemotherapy in patients with metastatic colorectal cancer(CRC)according to the expression of PD-L1.METHODS This analysis included CRC patients who received bevacizumab plus FOLFOX or FOLFIRI as first-line therapy between June 24,2014 and February 28,2022,at Samsung Medical Center(Seoul,South Korea).Analysis of patient data included evaluation of PD-L1 expression by the combined positive score(CPS).We analyzed the efficacy of bevacizumab according to PD-L1 expression status in patients with CRC.RESULTS A total of 124 patients was included in this analysis.Almost all patients were treated with bevacizumab plus FOLFIRI or FOLFOX as the first-line chemotherapy.While 77%of patients received FOLFOX,23%received FOLFIRI as backbone first-line chemotherapy.The numbers of patients with a PD-L1 CPS of 1 or more,5 or more,or 10 or more were 105(85%),64(52%),and 32(26%),respectively.The results showed no significant difference in progression-free survival(PFS)and overall survival(OS)with bevacizumab treatment between patients with PDL1 CPS less than 1 and those with PD-L1 CPS of 1 or more(PD-L1<1%vs PD-L1≥1%;PFS:P=0.93,OS:P=0.33),between patients with PD-L1 CPS less than 5 and of 5 or more(PD-L1<5%vs PD-L1≥5%;PFS:P=0.409,OS:P=0.746),and between patients with PD-L1 CPS less than 10 and of 10 or more(PD-L1<10%vs PD-L1≥10%;PFS:P=0.529,OS:P=0.568).CONCLUSION Chemotherapy containing bevacizumab can be considered as first-line therapy in metastatic CRC irrespective of PD-L1 expression.展开更多
Objective:To explore the effect and mechanism of prostaglandins D2(PGD2)on the stemness of gastric cancer stem cells(GCSCs).Methods:7901-GCSCs were enriched by serum-free culture method;then the positivity rate of CD4...Objective:To explore the effect and mechanism of prostaglandins D2(PGD2)on the stemness of gastric cancer stem cells(GCSCs).Methods:7901-GCSCs were enriched by serum-free culture method;then the positivity rate of CD44,a stemness marker,was detected by flow cytometry in serum-free cultured 7901-GCSCs;the sphere-forming ability was detected by the sphere-forming assay after stimulation with different concentrations of PGD2(2.5,5,10)μg/mL,and the expression of stemness-related indicators(OCT4,CD44)and autophagyrelated proteins(LC3,Beclin-1)after PGD2 stimulation was detected by the western blot assay in different concentrations.The expression of stemness-related indexes(OCT4,CD44)and autophagy-related proteins(LC3,Beclin-1)were detected by Western blot assay after stimulation with different concentrations of PGD2.The expression of autophagy-related proteins after stimulation with different concentrations of CQ(2.5,5,10)μM was detected by Western blot experiment.The protein expression of autophagy-related proteins(LC3,Beclin-1)and stemness-related indexes(OCT4,CD44)was detected by Western blot experiment after PGD2 as well as PGD2+CQ treatment.Results:Flow cytometry results showed that the expression of CD44 positivity was increased in serum-free cultured 7901-GCSCs compared with gastric cancer cells SGC-7901(P<0.05),which fulfilled the needs of subsequent experiments.The results of stem cell spheroid formation assay showed that the spheroid formation ability of 7901-GCSCs in the PGD2 group was significantly weakened compared with that of the DMSO group(P<0.05).Western blot results showed that the protein expression of stemness-related indexes(OCT4,CD44)was down-regulated in the 7901-GCSCs in the PGD2 group compared with that of the DMSO group(P<0.05),and the expression of autophagy-related proteins(LC3,Beclin-1)expression increased(P<0.05).Compared with the DMSO group,the expression of autophagy-related proteins(LC3,Beclin-1)was decreased in the CQ group(P<0.05).Western blot results also showed that the expression of cellular autophagy-related proteins and stemness-related indexes in the PGD2+CQ group was not significantly changed compared with that of the DMSO group(ns:the difference was not significant),suggesting that the CQ could block the effect of PGD2 on the expression of stemness markers in 7901-GCSCs.7901-GCSCs stemness inhibition.Conclusion:PGD2 may affect the stemness of 7901-GCSCs by regulating autophagy.展开更多
BACKGROUND Limonin is one of the most abundant active ingredients of Tetradium ruticarpum.It exerts antitumor effects on several kinds of cancer cells.However,whether limonin exerts antitumor effects on colorectal can...BACKGROUND Limonin is one of the most abundant active ingredients of Tetradium ruticarpum.It exerts antitumor effects on several kinds of cancer cells.However,whether limonin exerts antitumor effects on colorectal cancer(CRC)cells and cancer stem-like cells(CSCs),a subpopulation responsible for a poor prognosis,is unclear.AIM To evaluate the effects of limonin on CSCs derived from CRC cells.METHODS CSCs were collected by culturing CRC cells in serum-free medium.The cytotoxicity of limonin against CSCs and parental cells(PCs)was determined by cholecystokinin octapeptide-8 assay.The effects of limonin on stemness were detected by measuring stemness hallmarks and sphere formation ability.RESULTS As expected,limonin exerted inhibitory effects on CRC cell behaviors,including cell proliferation,migration,invasion,colony formation and tumor formation in soft agar.A relatively low concentration of limonin decreased the expression stemness hallmarks,including Nanog andβ-catenin,the proportion of aldehyde dehydrogenase 1-positive CSCs,and the sphere formation rate,indicating that limonin inhibits stemness without presenting cytotoxicity.Additionally,limonin treatment inhibited invasion and tumor formation in soft agar and in nude mice.Moreover,limonin treatment significantly inhibited the phosphorylation of STAT3 at Y705 but not S727 and did not affect total STAT3 expression.Inhibition of Nanog andβ-catenin expression and sphere formation by limonin was obviously reversed by pretreatment with 2μmol/L colievlin.CONCLUSION Taken together,these results indicate that limonin is a promising compound that targets CSCs and could be used to combat CRC recurrence and metastasis.展开更多
Cancer stem cells(CSCs),or tumor-initiating cells(TICs),are cancerous cell subpopulations that remain while tumor cells propagate as a unique subset and exhibit multiple applications in several diseases.They are respo...Cancer stem cells(CSCs),or tumor-initiating cells(TICs),are cancerous cell subpopulations that remain while tumor cells propagate as a unique subset and exhibit multiple applications in several diseases.They are responsible for cancer cell initiation,development,metastasis,proliferation,and recurrence due to their self-renewal and differentiation abilities in many kinds of cells.Artificial intelligence(AI)has gained significant attention because of its vast applications in various fields including agriculture,healthcare,transportation,and robotics,particularly in detecting human diseases such as cancer.The division and metastasis of cancerous cells are not easy to identify at early stages due to their uncontrolled situations.It has provided some real-time pictures of cancer progression and relapse.The purpose of this review paper is to explore new investigations into the role of AI in cancer stem cell progression and metastasis and in regenerative medicines.It describes the association of machine learning and AI with CSCs along with its numerous applications from cancer diagnosis to therapy.This review has also provided key challenges and future directions of AI in cancer stem cell research diagnosis and therapeutic approach.展开更多
Cancer stem cells(CSCs),first identified in blood cancers,are increasingly recognized as significant biomarkers and targets in tumor therapy due to their metastatic potential and role in cancer recurrence.Recent resea...Cancer stem cells(CSCs),first identified in blood cancers,are increasingly recognized as significant biomarkers and targets in tumor therapy due to their metastatic potential and role in cancer recurrence.Recent research has demonstrated the dedication of scientists in targeting CSCs to explore novel therapeutic strategies.Many types of cancer exhibit metastasis,heterogeneity,and resistance to treatment,all of which are influenced by CSCs.These cells utilize various transcription factors and signaling pathways to carry out these functions.By identifying and understanding these pathways,new therapeutic breakthroughs can be achieved.Thus,targeting cancer stem cells holds great potential and importance in cancer treatment.Moreover,CSCs offer promising avenues for treating otherwise incurable diseases.However,targeting CSCs presents challenges such as immunological rejection and disease recurrence.Advancing research into CSCs may reveal new insights in the fight against cancer and ultimately improve human health.This review explores the roles of CSCs in cancer development and treatment,aiming to uncover new therapeutic approaches.展开更多
Objective This study aimed to investigate the changes of follicular helper T(TFH)and follicular regulatory T(TFR)cell subpopulations in patients with non-small cell lung cancer(NSCLC)and their significance.Methods Per...Objective This study aimed to investigate the changes of follicular helper T(TFH)and follicular regulatory T(TFR)cell subpopulations in patients with non-small cell lung cancer(NSCLC)and their significance.Methods Peripheral blood was collected from 58 NSCLC patients at different stages and 38 healthy controls.Flow cytometry was used to detect TFH cell subpopulation based on programmed death 1(PD-1)and inducible co-stimulator(ICOS),and TFR cell subpopulation based on cluster determinant 45RA(CD45RA)and forkhead box protein P3(FoxP3).The levels of interleukin-10(IL-10),interleukin-17a(IL-17a),interleukin-21(IL-21),and transforming growth factor-β(TGF-β)in the plasma were measured,and changes in circulating B cell subsets and plasma IgG levels were also analyzed.The correlation between serum cytokeratin fragment antigen 21-1(CYFRA 21-1)levels and TFH,TFR,or B cell subpopulations was further explored.Results The TFR/TFH ratio increased significantly in NSCLC patients.The CD45RA^(+)FoxP3^(int) TFR subsets were increased,with their proportions increasing in stages Ⅱ to Ⅲ and decreasing in stage IV.PD-1^(+)ICOS+TFH cells showed a downward trend with increasing stages.Plasma IL-21 and TGF-β concentrations were increased in NSCLC patients compared with healthy controls.Plasmablasts,plasma IgG levels,and CD45RA^(+)FoxP3^(int) TFR cells showed similar trends.TFH numbers and plasmablasts were positively correlated with CYFRA 21-1 in stages Ⅰ-Ⅲ and negatively correlated with CYFRA 21-1 in stage IV.Conclusion Circulating TFH and TFR cell subpopulations and plasmablasts dynamically change in different stages of NSCLC,which is associated with serum CYFRA 21-1 levels and reflects disease progression.展开更多
Cancer is a major cause of morbidity and mortality worldwide,and the incidence is increasing,highlighting the need for effective strategies to treat this disease.Exercise has emerged as fundamental therapeutic medicin...Cancer is a major cause of morbidity and mortality worldwide,and the incidence is increasing,highlighting the need for effective strategies to treat this disease.Exercise has emerged as fundamental therapeutic medicine in the management of cancer,associated with a lower risk of recur-rence and increased survival.Several avenues of research demonstrate reduction in growth,proliferation,and increased apoptosis of cancer cells,including breast,prostate,colorectal,and lung cancer,when cultured by serum collected after exercise in vitro(i.e.,the cultivation of cancer cell lines in an experimental setting,which simplifies the biological system and provides mechanistic insight into cell responses).The underlying mechanisms of exercise-induced cancer suppressive effects may be attributed to the alteration in circulating factors,such as skeletal muscle-induced cytokines(i.e.,myokines)and hormones.However,exercise-induced tumor suppressive effects and detailed information about training interventions are not well investigated,constraining more precise application of exercise medicine within clinical oncology.To date,it remains unclear what role different training modes(i.e.,resistance and aerobic training)as well as volume and intensity have on exercise-condi-tioned serum and its effects on cancer cells.Nevertheless,the available evidence is that a single bout of aerobic training at moderate to vigorous intensity has cancer suppressive effects,while for chronic training interventions,exercise volume appears to be an influential candidate driving cancer inhibitory effects regardless of training mode.Insights for future research investigating training modes,volume and intensity are provided to further our understanding of the effects of exercise-conditioned serum on cancer cells.展开更多
Primary or secondary clear cell sarcoma of the pancreas is an exceedingly rare and aggressive disease.In addition to pathology,molecular analysis is pivotal in differential diagnosis,especially with malignant melanoma...Primary or secondary clear cell sarcoma of the pancreas is an exceedingly rare and aggressive disease.In addition to pathology,molecular analysis is pivotal in differential diagnosis,especially with malignant melanoma.A key aspect in identifying clear cell sarcoma is specific genetic alterations,notably the translocation of t(12;22)(q13;q13),a diagnostic hallmark of this sarcoma subtype,which is absent in malignant melanoma.Treatment of primary clear cell sarcoma of the pancreas is the same as that for adenocarcinoma.展开更多
BACKGROUND Bladder cancer(BC)is the most common urological tumor.It has a high recur-rence rate,displays tutor heterogeneity,and resists chemotherapy.Furthermore,the long-term survival rate of BC patients has remained...BACKGROUND Bladder cancer(BC)is the most common urological tumor.It has a high recur-rence rate,displays tutor heterogeneity,and resists chemotherapy.Furthermore,the long-term survival rate of BC patients has remained unchanged for decades,which seriously affects the quality of patient survival.To improve the survival rate and prognosis of BC patients,it is necessary to explore the molecular mechanisms of BC development and progression and identify targets for treatment and intervention.Transmembrane 9 superfamily member 1(TM9SF1),also known as MP70 and HMP70,is a member of a family of nine transmembrane superfamily proteins,which was first identified in 1997.TM9SF1 can be expressed in BC,but its biological function and mechanism in BC are not clear.AIM To investigate the biological function and mechanism of TM9SF1 in BC.Overexpression of TM9SF1 increased the in vitro proliferation,migration,and invasion of BC cells by promoting the entry of BC cells into the G2/M phase.Silencing of TM9SF1 inhibited in vitro proliferation,migration,and invasion of BC cells and blocked BC cells in the G1 phase.CONCLUSION TM9SF1 may be an oncogene in BC.展开更多
BACKGROUND This study was designed to investigate the clinical outcomes of enhanced recovery after surgery(ERAS)in the perioperative period in elderly patients with nonsmall cell lung cancer(NSCLC).AIM To investigate ...BACKGROUND This study was designed to investigate the clinical outcomes of enhanced recovery after surgery(ERAS)in the perioperative period in elderly patients with nonsmall cell lung cancer(NSCLC).AIM To investigate the potential enhancement of video-assisted thoracic surgery(VATS)in postoperative recovery in elderly patients with NSCLC.METHODS We retrospectively analysed the clinical data of 85 elderly NSCLC patients who underwent ERAS(the ERAS group)and 327 elderly NSCLC patients who received routine care(the control group)after VATS at the Department of Thoracic Surgery of Peking University Shenzhen Hospital between May 2015 and April 2017.After propensity score matching of baseline data,we analysed the postoperative stay,total hospital expenses,postoperative 48-h pain score,and postoperative complication rate for the 2 groups of patients who underwent lobectomy or sublobar resection.RESULTS After propensity score matching,ERAS significantly reduced the postoperative hospital stay(6.96±4.16 vs 8.48±4.18 d,P=0.001)and total hospital expenses(48875.27±18437.5 vs 55497.64±21168.63 CNY,P=0.014)and improved the satisfaction score(79.8±7.55 vs 77.35±7.72,P=0.029)relative to those for routine care.No significant between-group difference was observed in postoperative 48-h pain score(4.68±1.69 vs 5.28±2.1,P=0.090)or postoperative complication rate(21.2%vs 27.1%,P=0.371).Subgroup analysis showed that ERAS significantly reduced the postoperative hospital stay and total hospital expenses and increased the satisfaction score of patients who underwent lobectomy but not of patients who underwent sublobar resection.CONCLUSION ERAS effectively reduced the postoperative hospital stay and total hospital expenses and improved the satisfaction score in the perioperative period for elderly NSCLC patients who underwent lobectomy but not for patients who underwent sublobar resection.展开更多
Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapaglif...Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapagliflozin(DAP),Empagliflozin(EMP),and Doxorubicin(DOX),using in vitro experimentation.The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin(DOX)in MCF-7 cells.Interestingly,it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth.Notably,when these medications were combined with DOX,there was a considerable inhibition of glucose consumption,as well as reductions in intracellular ATP and lactate levels.Moreover,this effect was found to be dependent on the dosages of the drugs.In addition to effectively inhibiting the cell cycle,the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression.This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications,namely CAN,DAP,and EMP,on the responsiveness to the anticancer properties of DOX.The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.展开更多
BACKGROUND Colorectal cancer(CRC)is a considerable global health issue.Dioscin,a compound found in several medicinal plants,has shown potential anticancer effects.AIM To find the relationship between CRC cells(HCT116)...BACKGROUND Colorectal cancer(CRC)is a considerable global health issue.Dioscin,a compound found in several medicinal plants,has shown potential anticancer effects.AIM To find the relationship between CRC cells(HCT116)and diosgenin and clarified their mechanisms of action.METHODS CRC cell line HCT116 was cultured by dividing cells into control and dioscin groups(dioscin+Jagged 1 group;Jagged 1 group,5μg/mL;and dioscin group,2.5μg/mL).The dioscin groups were given different concentrations of dioscin.Cell Counting Kit-8 was chosen for testing cell viability in different groups.Flow cytometry was established to undiscover the apoptosis rate of human liver cancer cell line 11.Real-time PCR as well as Western blot analyses were applied to reveal the expression levels of caspase-3,Notch,and other proteins.Transwell and scratch experiments were conducted to assess cell migration and invasion abilities.RESULTS This study indicated that dioscin restricted the growth of HCT116 cells,boosted cell apoptosis,and rose the Bax/Bcl-2 ratio as well as the expression of Caspase-3.Dioscin also inhibited physiological activities,for instance cell migration,and significantly reduced the expression levels of proteins for instance Notch1(P<0.05).Dioscin partially reversed the effects of Jagged 1.CONCLUSION Dioscin exerts a certain inhibitory effect on HCT116,and its mechanism of action may be linked,with the inhibition of the Notch1 signaling pathway.展开更多
Colorectal cancer(CRC)is the third most common cancer and the second leading cause of cancer-related deaths worldwide.Dendritic cells(DCs)constitute a heterogeneous group of antigen-presenting cells that are important...Colorectal cancer(CRC)is the third most common cancer and the second leading cause of cancer-related deaths worldwide.Dendritic cells(DCs)constitute a heterogeneous group of antigen-presenting cells that are important for initiating and regulating both innate and adaptive immune responses.As a crucial component of the immune system,DCs have a pivotal role in the pathogenesis and clinical treatment of CRC.DCs cross-present tumor-related antigens to activate T cells and trigger an antitumor immune response.However,the antitumor immune function of DCs is impaired and immune tolerance is promoted due to the presence of the tumor microenvironment.This review systematically elucidates the specific characteristics and functions of different DC subsets,as well as the role that DCs play in the immune response and tolerance within the CRC microenvironment.Moreover,how DCs contribute to the progression of CRC and potential therapies to enhance antitumor immunity on the basis of existing data are also discussed,which will provide new perspectives and approaches for immunotherapy in patients with CRC.展开更多
Background: Triple-negative breast cancer(TNBC), which is so called because of the lack of estrogen receptors(ER), progesterone receptors(PR), and human epidermal growth factor receptor 2(HER2) receptors on the cancer...Background: Triple-negative breast cancer(TNBC), which is so called because of the lack of estrogen receptors(ER), progesterone receptors(PR), and human epidermal growth factor receptor 2(HER2) receptors on the cancer cells, accounts for 10%–15% of all breast cancers. The heterogeneity of the tumor microenvironment is high.However, the role of plasma cells controlling the tumor migration progression in TNBC is still not fully understood.Methods: We analyzed single-cell RNA sequencing data from five HER2 positive, 12ER positive/PR positive, and nine TNBC samples. The potential targets were validated by immunohistochemistry.Results: Plasma cells were enriched in TNBC samples, which was consistent with validation using data from The Cancer Genome Atlas. Cell communication analysis revealed that plasma cells interact with T cells through the intercellular adhesion molecule 2–integrin–aLb2 complex, and then release interleukin 1 beta(IL1B), as verified by immunohistochemistry, ultimately promoting tumor growth.Conclusion: Our results revealed the role of plasma cells in TNBC and identified IL1B as a new prognostic marker for TNBC.展开更多
Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed t...Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.展开更多
文摘Cancer cell dormancy(CCD)in colorectal cancer(CRC)poses a significant challenge to effective treatment.In CRC,CCD contributes to tumour recurrence,drug resistance,and amplifying the disease's burden.The molecular mechanisms governing CCD and strategies for eliminating dormant cancer cells remain largely unexplored.Therefore,understanding the molecular mechanisms governing dormancy is crucial for improving patient outcomes and developing targeted therapies.This editorial highlights the complex interplay of signalling pathways and factors involved in colorectal CCD,emphasizing the roles of Hippo/YAP,pluripotent transcription factors such as NANOG,HIF-1αsignalling,and Notch signalling pathways.Additionally,ERK/p38α/β/MAPK pathways,AKT signalling pathway,and Extracellular Matrix Metalloproteinase Inducer,along with some potential less explored pathways such as STAT/p53 switch and canonical and non-canonical Wnt and SMAD signalling,are also involved in promoting colorectal CCD.Highlighting their clinical significance,these findings may offer the potential for identifying key dormancy regulator pathways,improving treatment strategies,surmounting drug resistance,and advancing personalized medicine approaches.Moreover,insights into dormancy mechanisms could lead to the development of predictive biomarkers for identifying patients at risk of recurrence and the tailoring of targeted therapies based on individual dormancy profiles.It is essential to conduct further research into these pathways and their modulation to fully comprehend CRC dormancy mechanisms and enhance patient outcomes.
基金supported by the National Key Research and Development Program of China(2023YFC2506400,2020YFA0112300)National Natural Science Foundation of China(82230103,81930075,82073267,82203399,82372689)+1 种基金Program for Outstanding Leading Talents in ShanghaiInnovative Research Team of High-level Local University in Shanghai。
文摘Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem,including tumor cells and microenvironment.Breast cancer stem cells(BCSCs)constitute a small population of cancer cells with unique characteristics,including their capacity for self-renewal and differentiation.Studies have shown that BCSCs not only drive tumorigenesis but also play a crucial role in promoting metastasis in breast cancer.The tumor microenvironment(TME),composed of stromal cells,immune cells,blood vessel cells,fibroblasts,and microbes in proximity to cancer cells,is increasingly recognized for its crosstalk with BCSCs and role in BCSC survival,growth,and dissemination,thereby influencing metastatic ability.Hence,a thorough understanding of BCSCs and the TME is critical for unraveling the mechanisms underlying breast cancer metastasis.In this review,we summarize current knowledge on the roles of BCSCs and the TME in breast cancer metastasis,as well as the underlying regulatory mechanisms.Furthermore,we provide an overview of relevant mouse models used to study breast cancer metastasis,as well as treatment strategies and clinical trials addressing BCSC-TME interactions during metastasis.Overall,this study provides valuable insights for the development of effective therapeutic strategies to reduce breast cancer metastasis.
基金This research was partly supported by the Fundamental Research Funds of Shandong University(21510078614097)the Shandong Natural Science Foundation General Project(ZR2022MC093).
文摘Objectives:This study aimed to reveal the role and possible mechanism of the ubiquitin-conjugating enzyme 2T(UBE2T)in the biological activities of breast cancer stem cells(BCSCs).Methods:The specific protein and gene expression were quantified by Western blotting and quantitative real-time polymerase chain reaction,the proportion of BCSCs was examined by flow cytometry,and the self-renewal and proliferation of BCSCs were verified by serial sphere formation and soft agar.Results:Increasing expression of UBE2T was drastically found in breast cancer than that in adjacent tissues.Furthermore,UBE2T overexpression significantly increased the proportion of BCSCs in breast cancer cells and promoted their self-renewal and proliferation.Silent UBE2T exhibited the opposite functions.UBE2T increased the levels of the mammalian target of rapamycin and the phosphorylated mammalian target of rapamycin.Mammalian target of rapamycin(mTOR)inhibitor rapamycin inhibited the function of UBE2T in BCSCs.Conclusion:UBE2T plays a role in BCSCs through mTOR pathway and may suggest a novel therapeutic strategy for breast cancer.
文摘The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies.As a class of drugs widely used in clinical tumor immunotherapy,ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system.The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly.The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs.ICIs can regulate the phenotypic function of TAMs,and TAMs can also affect the tolerance of colorectal cancer to ICI therapy.TAMs play an important role in ICI resistance,and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
文摘Clear cell sarcoma(CCS)is a type of malignant tumor that can arise from tendons and aponeuroses.This malignant proliferation of cells with melanocytic lineage normally occurs in young patients,and it is normally identified in extremities.However,different sites including gastrointestinal organs are also described.Due difficulties in the molecular and histopathology evaluation,the diagnosis is often confused with malignant melanoma.Most cases are treated with surgical resection,but overall,the prognosis is poor.In this editorial,we will discuss a very interesting case of CCS identified in the pancreas.We will discuss the literature and controversies in the management of this type of cancer.Furthermore,we will address molecular strategies to be incorporated in those cases to better understand the primary location of the tumor.Finally,future perspectives of the field and new strategies of treatment will be described.
文摘BACKGROUND Bevacizumab,an anti-vascular endothelial growth factor(VEGF)monoclonal antibody,inhibits angiogenesis and reduces tumor growth.Serum VEGF-C,lactate dehydrogenase,and inflammatory markers have been reported as predictive markers related to bevacizumab treatment.Programmed cell death ligand 1(PD-L1)could act upon VEGF receptor 2 to induce cancer cell angiogenesis and metastasis.AIM To investigate the efficacy of bevacizumab-containing chemotherapy in patients with metastatic colorectal cancer(CRC)according to the expression of PD-L1.METHODS This analysis included CRC patients who received bevacizumab plus FOLFOX or FOLFIRI as first-line therapy between June 24,2014 and February 28,2022,at Samsung Medical Center(Seoul,South Korea).Analysis of patient data included evaluation of PD-L1 expression by the combined positive score(CPS).We analyzed the efficacy of bevacizumab according to PD-L1 expression status in patients with CRC.RESULTS A total of 124 patients was included in this analysis.Almost all patients were treated with bevacizumab plus FOLFIRI or FOLFOX as the first-line chemotherapy.While 77%of patients received FOLFOX,23%received FOLFIRI as backbone first-line chemotherapy.The numbers of patients with a PD-L1 CPS of 1 or more,5 or more,or 10 or more were 105(85%),64(52%),and 32(26%),respectively.The results showed no significant difference in progression-free survival(PFS)and overall survival(OS)with bevacizumab treatment between patients with PDL1 CPS less than 1 and those with PD-L1 CPS of 1 or more(PD-L1<1%vs PD-L1≥1%;PFS:P=0.93,OS:P=0.33),between patients with PD-L1 CPS less than 5 and of 5 or more(PD-L1<5%vs PD-L1≥5%;PFS:P=0.409,OS:P=0.746),and between patients with PD-L1 CPS less than 10 and of 10 or more(PD-L1<10%vs PD-L1≥10%;PFS:P=0.529,OS:P=0.568).CONCLUSION Chemotherapy containing bevacizumab can be considered as first-line therapy in metastatic CRC irrespective of PD-L1 expression.
基金Natural Science Foundation of Anhui Province(No.1908085MH258)Scientific Research and Innovation Project of Bengbu Medical College(No.Byycxz21004)。
文摘Objective:To explore the effect and mechanism of prostaglandins D2(PGD2)on the stemness of gastric cancer stem cells(GCSCs).Methods:7901-GCSCs were enriched by serum-free culture method;then the positivity rate of CD44,a stemness marker,was detected by flow cytometry in serum-free cultured 7901-GCSCs;the sphere-forming ability was detected by the sphere-forming assay after stimulation with different concentrations of PGD2(2.5,5,10)μg/mL,and the expression of stemness-related indicators(OCT4,CD44)and autophagyrelated proteins(LC3,Beclin-1)after PGD2 stimulation was detected by the western blot assay in different concentrations.The expression of stemness-related indexes(OCT4,CD44)and autophagy-related proteins(LC3,Beclin-1)were detected by Western blot assay after stimulation with different concentrations of PGD2.The expression of autophagy-related proteins after stimulation with different concentrations of CQ(2.5,5,10)μM was detected by Western blot experiment.The protein expression of autophagy-related proteins(LC3,Beclin-1)and stemness-related indexes(OCT4,CD44)was detected by Western blot experiment after PGD2 as well as PGD2+CQ treatment.Results:Flow cytometry results showed that the expression of CD44 positivity was increased in serum-free cultured 7901-GCSCs compared with gastric cancer cells SGC-7901(P<0.05),which fulfilled the needs of subsequent experiments.The results of stem cell spheroid formation assay showed that the spheroid formation ability of 7901-GCSCs in the PGD2 group was significantly weakened compared with that of the DMSO group(P<0.05).Western blot results showed that the protein expression of stemness-related indexes(OCT4,CD44)was down-regulated in the 7901-GCSCs in the PGD2 group compared with that of the DMSO group(P<0.05),and the expression of autophagy-related proteins(LC3,Beclin-1)expression increased(P<0.05).Compared with the DMSO group,the expression of autophagy-related proteins(LC3,Beclin-1)was decreased in the CQ group(P<0.05).Western blot results also showed that the expression of cellular autophagy-related proteins and stemness-related indexes in the PGD2+CQ group was not significantly changed compared with that of the DMSO group(ns:the difference was not significant),suggesting that the CQ could block the effect of PGD2 on the expression of stemness markers in 7901-GCSCs.7901-GCSCs stemness inhibition.Conclusion:PGD2 may affect the stemness of 7901-GCSCs by regulating autophagy.
文摘BACKGROUND Limonin is one of the most abundant active ingredients of Tetradium ruticarpum.It exerts antitumor effects on several kinds of cancer cells.However,whether limonin exerts antitumor effects on colorectal cancer(CRC)cells and cancer stem-like cells(CSCs),a subpopulation responsible for a poor prognosis,is unclear.AIM To evaluate the effects of limonin on CSCs derived from CRC cells.METHODS CSCs were collected by culturing CRC cells in serum-free medium.The cytotoxicity of limonin against CSCs and parental cells(PCs)was determined by cholecystokinin octapeptide-8 assay.The effects of limonin on stemness were detected by measuring stemness hallmarks and sphere formation ability.RESULTS As expected,limonin exerted inhibitory effects on CRC cell behaviors,including cell proliferation,migration,invasion,colony formation and tumor formation in soft agar.A relatively low concentration of limonin decreased the expression stemness hallmarks,including Nanog andβ-catenin,the proportion of aldehyde dehydrogenase 1-positive CSCs,and the sphere formation rate,indicating that limonin inhibits stemness without presenting cytotoxicity.Additionally,limonin treatment inhibited invasion and tumor formation in soft agar and in nude mice.Moreover,limonin treatment significantly inhibited the phosphorylation of STAT3 at Y705 but not S727 and did not affect total STAT3 expression.Inhibition of Nanog andβ-catenin expression and sphere formation by limonin was obviously reversed by pretreatment with 2μmol/L colievlin.CONCLUSION Taken together,these results indicate that limonin is a promising compound that targets CSCs and could be used to combat CRC recurrence and metastasis.
文摘Cancer stem cells(CSCs),or tumor-initiating cells(TICs),are cancerous cell subpopulations that remain while tumor cells propagate as a unique subset and exhibit multiple applications in several diseases.They are responsible for cancer cell initiation,development,metastasis,proliferation,and recurrence due to their self-renewal and differentiation abilities in many kinds of cells.Artificial intelligence(AI)has gained significant attention because of its vast applications in various fields including agriculture,healthcare,transportation,and robotics,particularly in detecting human diseases such as cancer.The division and metastasis of cancerous cells are not easy to identify at early stages due to their uncontrolled situations.It has provided some real-time pictures of cancer progression and relapse.The purpose of this review paper is to explore new investigations into the role of AI in cancer stem cell progression and metastasis and in regenerative medicines.It describes the association of machine learning and AI with CSCs along with its numerous applications from cancer diagnosis to therapy.This review has also provided key challenges and future directions of AI in cancer stem cell research diagnosis and therapeutic approach.
文摘Cancer stem cells(CSCs),first identified in blood cancers,are increasingly recognized as significant biomarkers and targets in tumor therapy due to their metastatic potential and role in cancer recurrence.Recent research has demonstrated the dedication of scientists in targeting CSCs to explore novel therapeutic strategies.Many types of cancer exhibit metastasis,heterogeneity,and resistance to treatment,all of which are influenced by CSCs.These cells utilize various transcription factors and signaling pathways to carry out these functions.By identifying and understanding these pathways,new therapeutic breakthroughs can be achieved.Thus,targeting cancer stem cells holds great potential and importance in cancer treatment.Moreover,CSCs offer promising avenues for treating otherwise incurable diseases.However,targeting CSCs presents challenges such as immunological rejection and disease recurrence.Advancing research into CSCs may reveal new insights in the fight against cancer and ultimately improve human health.This review explores the roles of CSCs in cancer development and treatment,aiming to uncover new therapeutic approaches.
基金supported by grants from the National Natural Science Foundation of China(No.82271755,No.81871230)Peking University People's Hospital Scientific Research Development Funds(RZ 2022-06).
文摘Objective This study aimed to investigate the changes of follicular helper T(TFH)and follicular regulatory T(TFR)cell subpopulations in patients with non-small cell lung cancer(NSCLC)and their significance.Methods Peripheral blood was collected from 58 NSCLC patients at different stages and 38 healthy controls.Flow cytometry was used to detect TFH cell subpopulation based on programmed death 1(PD-1)and inducible co-stimulator(ICOS),and TFR cell subpopulation based on cluster determinant 45RA(CD45RA)and forkhead box protein P3(FoxP3).The levels of interleukin-10(IL-10),interleukin-17a(IL-17a),interleukin-21(IL-21),and transforming growth factor-β(TGF-β)in the plasma were measured,and changes in circulating B cell subsets and plasma IgG levels were also analyzed.The correlation between serum cytokeratin fragment antigen 21-1(CYFRA 21-1)levels and TFH,TFR,or B cell subpopulations was further explored.Results The TFR/TFH ratio increased significantly in NSCLC patients.The CD45RA^(+)FoxP3^(int) TFR subsets were increased,with their proportions increasing in stages Ⅱ to Ⅲ and decreasing in stage IV.PD-1^(+)ICOS+TFH cells showed a downward trend with increasing stages.Plasma IL-21 and TGF-β concentrations were increased in NSCLC patients compared with healthy controls.Plasmablasts,plasma IgG levels,and CD45RA^(+)FoxP3^(int) TFR cells showed similar trends.TFH numbers and plasmablasts were positively correlated with CYFRA 21-1 in stages Ⅰ-Ⅲ and negatively correlated with CYFRA 21-1 in stage IV.Conclusion Circulating TFH and TFR cell subpopulations and plasmablasts dynamically change in different stages of NSCLC,which is associated with serum CYFRA 21-1 levels and reflects disease progression.
文摘Cancer is a major cause of morbidity and mortality worldwide,and the incidence is increasing,highlighting the need for effective strategies to treat this disease.Exercise has emerged as fundamental therapeutic medicine in the management of cancer,associated with a lower risk of recur-rence and increased survival.Several avenues of research demonstrate reduction in growth,proliferation,and increased apoptosis of cancer cells,including breast,prostate,colorectal,and lung cancer,when cultured by serum collected after exercise in vitro(i.e.,the cultivation of cancer cell lines in an experimental setting,which simplifies the biological system and provides mechanistic insight into cell responses).The underlying mechanisms of exercise-induced cancer suppressive effects may be attributed to the alteration in circulating factors,such as skeletal muscle-induced cytokines(i.e.,myokines)and hormones.However,exercise-induced tumor suppressive effects and detailed information about training interventions are not well investigated,constraining more precise application of exercise medicine within clinical oncology.To date,it remains unclear what role different training modes(i.e.,resistance and aerobic training)as well as volume and intensity have on exercise-condi-tioned serum and its effects on cancer cells.Nevertheless,the available evidence is that a single bout of aerobic training at moderate to vigorous intensity has cancer suppressive effects,while for chronic training interventions,exercise volume appears to be an influential candidate driving cancer inhibitory effects regardless of training mode.Insights for future research investigating training modes,volume and intensity are provided to further our understanding of the effects of exercise-conditioned serum on cancer cells.
文摘Primary or secondary clear cell sarcoma of the pancreas is an exceedingly rare and aggressive disease.In addition to pathology,molecular analysis is pivotal in differential diagnosis,especially with malignant melanoma.A key aspect in identifying clear cell sarcoma is specific genetic alterations,notably the translocation of t(12;22)(q13;q13),a diagnostic hallmark of this sarcoma subtype,which is absent in malignant melanoma.Treatment of primary clear cell sarcoma of the pancreas is the same as that for adenocarcinoma.
基金Supported by National Natural Science Foundation of China,No.82260785.
文摘BACKGROUND Bladder cancer(BC)is the most common urological tumor.It has a high recur-rence rate,displays tutor heterogeneity,and resists chemotherapy.Furthermore,the long-term survival rate of BC patients has remained unchanged for decades,which seriously affects the quality of patient survival.To improve the survival rate and prognosis of BC patients,it is necessary to explore the molecular mechanisms of BC development and progression and identify targets for treatment and intervention.Transmembrane 9 superfamily member 1(TM9SF1),also known as MP70 and HMP70,is a member of a family of nine transmembrane superfamily proteins,which was first identified in 1997.TM9SF1 can be expressed in BC,but its biological function and mechanism in BC are not clear.AIM To investigate the biological function and mechanism of TM9SF1 in BC.Overexpression of TM9SF1 increased the in vitro proliferation,migration,and invasion of BC cells by promoting the entry of BC cells into the G2/M phase.Silencing of TM9SF1 inhibited in vitro proliferation,migration,and invasion of BC cells and blocked BC cells in the G1 phase.CONCLUSION TM9SF1 may be an oncogene in BC.
基金Supported by the Scientific Research Foundation of Peking University Shenzhen Hospital,No.KYQD2021096the National Natural Science Foundation of China,No.81972829Precision Medicine Research Program of Tsinghua University,No.2022ZLA006.
文摘BACKGROUND This study was designed to investigate the clinical outcomes of enhanced recovery after surgery(ERAS)in the perioperative period in elderly patients with nonsmall cell lung cancer(NSCLC).AIM To investigate the potential enhancement of video-assisted thoracic surgery(VATS)in postoperative recovery in elderly patients with NSCLC.METHODS We retrospectively analysed the clinical data of 85 elderly NSCLC patients who underwent ERAS(the ERAS group)and 327 elderly NSCLC patients who received routine care(the control group)after VATS at the Department of Thoracic Surgery of Peking University Shenzhen Hospital between May 2015 and April 2017.After propensity score matching of baseline data,we analysed the postoperative stay,total hospital expenses,postoperative 48-h pain score,and postoperative complication rate for the 2 groups of patients who underwent lobectomy or sublobar resection.RESULTS After propensity score matching,ERAS significantly reduced the postoperative hospital stay(6.96±4.16 vs 8.48±4.18 d,P=0.001)and total hospital expenses(48875.27±18437.5 vs 55497.64±21168.63 CNY,P=0.014)and improved the satisfaction score(79.8±7.55 vs 77.35±7.72,P=0.029)relative to those for routine care.No significant between-group difference was observed in postoperative 48-h pain score(4.68±1.69 vs 5.28±2.1,P=0.090)or postoperative complication rate(21.2%vs 27.1%,P=0.371).Subgroup analysis showed that ERAS significantly reduced the postoperative hospital stay and total hospital expenses and increased the satisfaction score of patients who underwent lobectomy but not of patients who underwent sublobar resection.CONCLUSION ERAS effectively reduced the postoperative hospital stay and total hospital expenses and improved the satisfaction score in the perioperative period for elderly NSCLC patients who underwent lobectomy but not for patients who underwent sublobar resection.
基金funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia,under Grant No.KEP-1-166-41The authors,therefore,acknowledge DSR,with thanks for their technical and financial support.
文摘Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapagliflozin(DAP),Empagliflozin(EMP),and Doxorubicin(DOX),using in vitro experimentation.The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin(DOX)in MCF-7 cells.Interestingly,it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth.Notably,when these medications were combined with DOX,there was a considerable inhibition of glucose consumption,as well as reductions in intracellular ATP and lactate levels.Moreover,this effect was found to be dependent on the dosages of the drugs.In addition to effectively inhibiting the cell cycle,the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression.This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications,namely CAN,DAP,and EMP,on the responsiveness to the anticancer properties of DOX.The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.
文摘BACKGROUND Colorectal cancer(CRC)is a considerable global health issue.Dioscin,a compound found in several medicinal plants,has shown potential anticancer effects.AIM To find the relationship between CRC cells(HCT116)and diosgenin and clarified their mechanisms of action.METHODS CRC cell line HCT116 was cultured by dividing cells into control and dioscin groups(dioscin+Jagged 1 group;Jagged 1 group,5μg/mL;and dioscin group,2.5μg/mL).The dioscin groups were given different concentrations of dioscin.Cell Counting Kit-8 was chosen for testing cell viability in different groups.Flow cytometry was established to undiscover the apoptosis rate of human liver cancer cell line 11.Real-time PCR as well as Western blot analyses were applied to reveal the expression levels of caspase-3,Notch,and other proteins.Transwell and scratch experiments were conducted to assess cell migration and invasion abilities.RESULTS This study indicated that dioscin restricted the growth of HCT116 cells,boosted cell apoptosis,and rose the Bax/Bcl-2 ratio as well as the expression of Caspase-3.Dioscin also inhibited physiological activities,for instance cell migration,and significantly reduced the expression levels of proteins for instance Notch1(P<0.05).Dioscin partially reversed the effects of Jagged 1.CONCLUSION Dioscin exerts a certain inhibitory effect on HCT116,and its mechanism of action may be linked,with the inhibition of the Notch1 signaling pathway.
基金This study was supported by grants from the National Natural Science Foundation of China(Grant Nos.82222058,82073197,82273142,and 82173256).
文摘Colorectal cancer(CRC)is the third most common cancer and the second leading cause of cancer-related deaths worldwide.Dendritic cells(DCs)constitute a heterogeneous group of antigen-presenting cells that are important for initiating and regulating both innate and adaptive immune responses.As a crucial component of the immune system,DCs have a pivotal role in the pathogenesis and clinical treatment of CRC.DCs cross-present tumor-related antigens to activate T cells and trigger an antitumor immune response.However,the antitumor immune function of DCs is impaired and immune tolerance is promoted due to the presence of the tumor microenvironment.This review systematically elucidates the specific characteristics and functions of different DC subsets,as well as the role that DCs play in the immune response and tolerance within the CRC microenvironment.Moreover,how DCs contribute to the progression of CRC and potential therapies to enhance antitumor immunity on the basis of existing data are also discussed,which will provide new perspectives and approaches for immunotherapy in patients with CRC.
基金funded by Young Elite Scientists Sponsorship Program by Beijing Association for science and technology(Grant No.BYESS2023226)。
文摘Background: Triple-negative breast cancer(TNBC), which is so called because of the lack of estrogen receptors(ER), progesterone receptors(PR), and human epidermal growth factor receptor 2(HER2) receptors on the cancer cells, accounts for 10%–15% of all breast cancers. The heterogeneity of the tumor microenvironment is high.However, the role of plasma cells controlling the tumor migration progression in TNBC is still not fully understood.Methods: We analyzed single-cell RNA sequencing data from five HER2 positive, 12ER positive/PR positive, and nine TNBC samples. The potential targets were validated by immunohistochemistry.Results: Plasma cells were enriched in TNBC samples, which was consistent with validation using data from The Cancer Genome Atlas. Cell communication analysis revealed that plasma cells interact with T cells through the intercellular adhesion molecule 2–integrin–aLb2 complex, and then release interleukin 1 beta(IL1B), as verified by immunohistochemistry, ultimately promoting tumor growth.Conclusion: Our results revealed the role of plasma cells in TNBC and identified IL1B as a new prognostic marker for TNBC.
基金supported by Shahrekord University of Medical Sciences,Shahrekord,Iran(Ethics Code:IR.SKUMS.REC.1397.119,Grant No.3696 and Ethics Code:IR.SKUMS.REC.1401.197,Grant No.6651).
文摘Background:Despite the availability of chemotherapy drugs such as 5-fluorouracil(5-FU),the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects.This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines(AGS and EPG85-257).Materials and Methods:In this in vitro study,AGS and EPG85-257 cells were treated with different concentrations of celastrol,5-FU,and their combination.Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The synergistic effect of 5-FU and celastrol was studied using Compusyn software.The DNA content at different phases of the cell cycle and apoptosis rate was measured usingflow cytometry.Results:Co-treatment with low concentrations(10%inhibitory concentration(IC10))of celastrol and 5-FU significantly reduced IC50(p<0.05)so that 48 h after treatment,IC50 was calculated at 3.77 and 6.9μM for celastrol,20.7 and 11.6μM for 5-FU,and 5.03 and 4.57μM for their combination for AGS and EPG85-257 cells,respectively.The mean percentage of apoptosis for AGS cells treated with celastrol,5-FU,and their combination was obtained 23.9,41.2,and 61.9,and for EPG85-257 cells 5.65,46.9,and 55.7,respectively.In addition,the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase.Conclusions:Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells,additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.