Aniline-degrading microbes were cultivated and acclimated with the initial activated sludge collected from a chemical wastewater treatment plant. During the acclimation processes, aerobic granular sludge being able to...Aniline-degrading microbes were cultivated and acclimated with the initial activated sludge collected from a chemical wastewater treatment plant. During the acclimation processes, aerobic granular sludge being able to effectively degrade aniline was successfully formed, from which a preponderant bacterial strain was isolated and named as AN1. Effects of factors including pH, temperature, and second carbon/nitrogen source on the biodegradation of aniline were investigated. Results showed that the optimal conditions for the biodegradation of aniline by the strain AN1 were at pH 7.0 and 28–35°C. At the optimal pH and temperature, the biodegradation rate of aniline could reach as high as 17.8 mg/(L·hr) when the initial aniline concentration was 400 mg/L. Further studies revealed that the addition of 1 g/L glucose or ammonium chloride as a second carbon or nitrogen source could slightly enhance the biodegradation efficiency from 93.0% to 95.1%–98.5%. However, even more addition of glucose or ammonium could not further enhance the biodegradation process but delayed the biodegradation of aniline by the strain AN1. Based on morphological and physiological characteristics as well as the phylogenetic analysis of 26S rDNA sequences, the strain AN1 was identified as Candida tropicalis.展开更多
基金supported by the National Natural Science Foundation of China (No. 20977048)the National High Technology and Development Program (863) of China (No. 2009AA06Z317)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Aniline-degrading microbes were cultivated and acclimated with the initial activated sludge collected from a chemical wastewater treatment plant. During the acclimation processes, aerobic granular sludge being able to effectively degrade aniline was successfully formed, from which a preponderant bacterial strain was isolated and named as AN1. Effects of factors including pH, temperature, and second carbon/nitrogen source on the biodegradation of aniline were investigated. Results showed that the optimal conditions for the biodegradation of aniline by the strain AN1 were at pH 7.0 and 28–35°C. At the optimal pH and temperature, the biodegradation rate of aniline could reach as high as 17.8 mg/(L·hr) when the initial aniline concentration was 400 mg/L. Further studies revealed that the addition of 1 g/L glucose or ammonium chloride as a second carbon or nitrogen source could slightly enhance the biodegradation efficiency from 93.0% to 95.1%–98.5%. However, even more addition of glucose or ammonium could not further enhance the biodegradation process but delayed the biodegradation of aniline by the strain AN1. Based on morphological and physiological characteristics as well as the phylogenetic analysis of 26S rDNA sequences, the strain AN1 was identified as Candida tropicalis.