A rational plant population is an important attribute to high yield of cotton, because it can provide a beneficial micro environment within the canopy for plant growth and development as well as yield formation. A 2-y...A rational plant population is an important attribute to high yield of cotton, because it can provide a beneficial micro environment within the canopy for plant growth and development as well as yield formation. A 2-yr field experiment was conducted to determine the optimal plant density based on cotton yield in relation to the canopy micro environment (canopy temperature, relative humidity and light transmittance). Six plant densities (1.2-5.7 plants m^-2) were arranged with a completely randomized block design. The highest cotton yield (1 507 kg ha^-1) was obtained at 3.0 plants m^-2 due to more bolls per unit ground area (79 bolls m2), while the lowest yield (1 091 kg ha1) was obtained at 1.2 plants m^-2. Under the moderate plant density (3.0 plants m^-2), there was a lower mean daily temperature (MDT, 27. 1℃) attributing to medium daily minimum temperature (Train, 21.9℃) and the lowest daily maximum temperature (Tmax, 35.8℃), a moderate mean canopy light transmittance of 0.51, and lower mean daily relative humidity (MRH) of 79.7% from June to October. The results suggest that 3.0 plants m^-2 would be the optimal plant density because it provides a better canopy micro environment.展开更多
Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechan...Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.展开更多
Increased grain yield(GY) and grain protein concentration(GPC) are the two main targets of efforts to improve wheat(Triticum aestivum L.) production in the North China Plain(NCP). We conducted a three-year field exper...Increased grain yield(GY) and grain protein concentration(GPC) are the two main targets of efforts to improve wheat(Triticum aestivum L.) production in the North China Plain(NCP). We conducted a three-year field experiment in the 2014–2017 winter wheat growing seasons to compare the effects of conventional irrigation practice(CI) and micro-sprinkling irrigation combined with nitrogen(N) fertilizer(MSI) on GY, GPC, and protein yield(PY). Across the three years, GY, GPC, and PY increased by 10.5%–16.7%, 5.4%–8.0%, and 18.8%–24.6%, respectively, under MSI relative to CI. The higher GY under MSI was due primarily to increased thousand-kernel weight(TKW). The chlorophyll content of leaves was higher under MSI during the mid–late grain filling period, increasing the contribution of post-anthesis dry matter accumulation to GY, with consequent increases in total dry matter accumulation and harvest index compared to CI. During the mid–late grain filling period, the canopy temperature was markedly lower and the relative humidity was higher under MSI than under CI. The duration and rate of filling during the mid–late grain filling period were also higher under MSI than CI, resulting in higher TKW. MSI increased the contribution of post-anthesis N accumulation to grain N but reduced the pre-anthesis remobilization of N in leaves, the primary site of photosynthetic activity, possibly helping maintain photosynthate production in leaves during grain filling. Total N at maturity was higher under MSI than CI,although there was little difference in N harvest index. The higher GPC under MSI than under CI was due to a larger increase in grain N accumulation than in GY. Overall, MSI simultaneously increased both GY and GPC in winter wheat grown in the NCP.展开更多
基金supported by Special Fund for Agro-scientific Research in the Public Interest,China(3-5-19)the Modern Agro-Industry Technology Research System,China(Cotton 2007-2010)the National Transgenic Cotton Production Program,China(2009ZX08013-014B)
文摘A rational plant population is an important attribute to high yield of cotton, because it can provide a beneficial micro environment within the canopy for plant growth and development as well as yield formation. A 2-yr field experiment was conducted to determine the optimal plant density based on cotton yield in relation to the canopy micro environment (canopy temperature, relative humidity and light transmittance). Six plant densities (1.2-5.7 plants m^-2) were arranged with a completely randomized block design. The highest cotton yield (1 507 kg ha^-1) was obtained at 3.0 plants m^-2 due to more bolls per unit ground area (79 bolls m2), while the lowest yield (1 091 kg ha1) was obtained at 1.2 plants m^-2. Under the moderate plant density (3.0 plants m^-2), there was a lower mean daily temperature (MDT, 27. 1℃) attributing to medium daily minimum temperature (Train, 21.9℃) and the lowest daily maximum temperature (Tmax, 35.8℃), a moderate mean canopy light transmittance of 0.51, and lower mean daily relative humidity (MRH) of 79.7% from June to October. The results suggest that 3.0 plants m^-2 would be the optimal plant density because it provides a better canopy micro environment.
基金the National Natural Science Foundation of China(32071955)the Natural Science Foundation of Shaanxi Province,China(2018JQ3061).
文摘Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.
基金supported by the National Key Research and Development Program of China (2016YFD0300401)the National Natural Science Foundation of China (32001474, 31871563)the China Agriculture Research System (CARS-3)。
文摘Increased grain yield(GY) and grain protein concentration(GPC) are the two main targets of efforts to improve wheat(Triticum aestivum L.) production in the North China Plain(NCP). We conducted a three-year field experiment in the 2014–2017 winter wheat growing seasons to compare the effects of conventional irrigation practice(CI) and micro-sprinkling irrigation combined with nitrogen(N) fertilizer(MSI) on GY, GPC, and protein yield(PY). Across the three years, GY, GPC, and PY increased by 10.5%–16.7%, 5.4%–8.0%, and 18.8%–24.6%, respectively, under MSI relative to CI. The higher GY under MSI was due primarily to increased thousand-kernel weight(TKW). The chlorophyll content of leaves was higher under MSI during the mid–late grain filling period, increasing the contribution of post-anthesis dry matter accumulation to GY, with consequent increases in total dry matter accumulation and harvest index compared to CI. During the mid–late grain filling period, the canopy temperature was markedly lower and the relative humidity was higher under MSI than under CI. The duration and rate of filling during the mid–late grain filling period were also higher under MSI than CI, resulting in higher TKW. MSI increased the contribution of post-anthesis N accumulation to grain N but reduced the pre-anthesis remobilization of N in leaves, the primary site of photosynthetic activity, possibly helping maintain photosynthate production in leaves during grain filling. Total N at maturity was higher under MSI than CI,although there was little difference in N harvest index. The higher GPC under MSI than under CI was due to a larger increase in grain N accumulation than in GY. Overall, MSI simultaneously increased both GY and GPC in winter wheat grown in the NCP.