期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Transitional Recovery Voltages at Capacitive Currents Switching-off by Vacuum and SF6 Circuit-Breakers
1
作者 Tahir M. Lazimov Samir V. Imanov Esam A. Saafan 《Journal of Energy and Power Engineering》 2012年第5期777-783,共7页
Results of calculation the recovery voltages conditioned by capacitive currents switching-off by high voltage vacuum and auto-compression (SF6) circuit-breakers are presented in the article. The purpose of research ... Results of calculation the recovery voltages conditioned by capacitive currents switching-off by high voltage vacuum and auto-compression (SF6) circuit-breakers are presented in the article. The purpose of research was evaluating the maximum values of recovery voltages and also studying the dependence of recovery voltages on some influencing factors, especially on type of circuit-breaker presented in numerical models with its dielectric strength restoration law, chopping current and operation time. The research was carried out with using computer simulation. 展开更多
关键词 Recovery voltages capacitive currents switching overvoltages capacitor banks dielectric strength restoration law.
下载PDF
Inherently Sinusoidal Single-phase Voltage Source Inverter Based on Modified Cuk Cell
2
作者 Misbahul Munir Wisyahyadi +1 位作者 Arwindra Rizqiawan Jihad Furqani 《Chinese Journal of Electrical Engineering》 EI CSCD 2024年第1期114-123,共10页
Renewable energy has become important for electricity generation because of the high air pollution associated with conventional fossil-based energy systems.Conventional fossil-based power plants are gradually transiti... Renewable energy has become important for electricity generation because of the high air pollution associated with conventional fossil-based energy systems.Conventional fossil-based power plants are gradually transitioning by incorporating renewable energy sources,such as photovoltaic(PV)cells.In a PV system,an inverter converts DC power from solar panels to AC power required to serve common electrical loads.A conventional H-bridge inverter topology has several disadvantages,such as the voltage being not sinusoidal,switching the DC voltage and high common-mode voltage.The common-mode voltage can cause a large leaked capacitive current,which can result in undesirable operation in solar power applications.A common solution to this problem is the addition of a large filter to the input or output of an inverter.An inherent sinusoidal voltage source inverter based on a modified Cuk converter as its basic cell,which simultaneously generates a sinusoidal output voltage and a lower common-mode voltage,is proposed.The proposed topology does not require additional input or output filters.Analytical expressions are derived to confirm the operation of the proposed topology.Simulation results confirm the mathematical analysis.A laboratory-scale experiment is performed to verify the proposed inverter. 展开更多
关键词 Voltage source inverter common-mode voltage capacitive current modified Cuk converter and sinusoidal waveform
原文传递
A novel complex current ratio-based technique for transmission line protection 被引量:2
3
作者 Suryanarayana Gangolu Saumendra Sarangi 《Protection and Control of Modern Power Systems》 2020年第1期259-267,共9页
With respect to sensitivity,selectivity and speed of operation,the current differential scheme is a better way to protect transmission lines than overcurrent and distance-based schemes.However,the protection scheme ca... With respect to sensitivity,selectivity and speed of operation,the current differential scheme is a better way to protect transmission lines than overcurrent and distance-based schemes.However,the protection scheme can be severely influenced by the Line Charging Capacitive Current(LCCC)with increased voltage level and Current Transformer(CT)saturation under external close-in faults.This paper presents a new UHV/EHV current-based protection scheme using the ratio of phasor summation of the two-end currents to the local end current,instead of summation of the two-end currents,to discriminate the internal faults.The accuracy and effectiveness of the proposed protection technique are tested on the 110 kV Western System Coordinating Council(WSCC)9-bus system using PSCAD/MATLAB.The simulation results confirm the reliable operation of the proposed scheme during internal/external faults and its independence from fault location,fault resistance,type of fault,and variations in source impedance.Finally,the effectiveness of the proposed scheme is also verified with faults during power swing and in series compensated lines. 展开更多
关键词 current differential protection Line charging capacitive current CT saturation Fault discrimination Phasor summation of currents
原文传递
Ultra-low noise measurements of nanopore-based single molecular detection 被引量:1
4
作者 Zhen Gu Huifeng Wang +1 位作者 Yi-Lun Ying Yi-Tao Long 《Science Bulletin》 SCIE EI CAS CSCD 2017年第18期1245-1250,共6页
Nanopore is an ultra-sensitive electrochemical technique for single molecular detection in confined space. To suppress the noise in detection of the weak current of nanopore, we investigated the influence of membrane ... Nanopore is an ultra-sensitive electrochemical technique for single molecular detection in confined space. To suppress the noise in detection of the weak current of nanopore, we investigated the influence of membrane capacitance and applied voltage on the noise of the current signal by model analysis, simulation and experiment. The obtained results demonstrated that membrane capacitance affects the noise by amplifying the noise of the applied voltage. Therefore, suppression of applied voltage noise is an efficient approach for reducing the noise in nanopore detection. Here, we developed an ultra-low noise instrument system for detecting the single molecule signal in nanopores. As demonstrated by nanopore experiments, the p-p noise of the developed system during the recording is reduced to 3.2B pA using the filter of 5 kHz. Therefore, the developed system could be applied in highly sensitive nanopore detection. 展开更多
关键词 Nanopore Membrane capacitance current amplifier Signal amplifier and recording High current resolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部