Euclidian geometry pertained only to the artificial realities of the first, second and third dimensions. Fractal geometry is a new branch of mathematics that proves useful in representing natural phenomena whose dimen...Euclidian geometry pertained only to the artificial realities of the first, second and third dimensions. Fractal geometry is a new branch of mathematics that proves useful in representing natural phenomena whose dimensions (fractal dimensions) are non-integer values. Fractal geometry was conceived in the 1970s, and mainly developed by Benoit Mandelbrot. In fractal geometry fractals are normally the results of an iterative or recursive construction using corresponding algorithm. Fractal analysis is a nontraditional mathematical and experimental method derived from Mandelbrot’s Fractal Geometry of Nature, Euclidean geometry and calculus. The main aims of the present study are: 1) to address the dimensional imbalances in some texts on fractal geometry, proving that logarithm of a physical quantity (e.g. length of a segment) is senseless;2) to define the modified capacity dimension, calculate its value for Koch fractal set and show that such definition satisfies basic demands of physics, before all the dimensional balance;and 3) to calculate theoretically the fractal dimension of a circle of unit radius. A quantitative determination of the similarity using the set of Koch fractals is carried out. An important result is the relationship between the modified capacity dimension and fractal dimension obtained using the log-log method. The text includes some important modifications and advances in fractal theory. It is important to notice that these modifications and quantifications do not affect already known facts in fractal geometry and fractal analysis.展开更多
文摘Euclidian geometry pertained only to the artificial realities of the first, second and third dimensions. Fractal geometry is a new branch of mathematics that proves useful in representing natural phenomena whose dimensions (fractal dimensions) are non-integer values. Fractal geometry was conceived in the 1970s, and mainly developed by Benoit Mandelbrot. In fractal geometry fractals are normally the results of an iterative or recursive construction using corresponding algorithm. Fractal analysis is a nontraditional mathematical and experimental method derived from Mandelbrot’s Fractal Geometry of Nature, Euclidean geometry and calculus. The main aims of the present study are: 1) to address the dimensional imbalances in some texts on fractal geometry, proving that logarithm of a physical quantity (e.g. length of a segment) is senseless;2) to define the modified capacity dimension, calculate its value for Koch fractal set and show that such definition satisfies basic demands of physics, before all the dimensional balance;and 3) to calculate theoretically the fractal dimension of a circle of unit radius. A quantitative determination of the similarity using the set of Koch fractals is carried out. An important result is the relationship between the modified capacity dimension and fractal dimension obtained using the log-log method. The text includes some important modifications and advances in fractal theory. It is important to notice that these modifications and quantifications do not affect already known facts in fractal geometry and fractal analysis.