Internet of Car, resulting from the Internet of Things, is a key point for the forthcoming smart city. In this article, GPS technology, 3G wireless technology and cloud-processing technology are employed to construct ...Internet of Car, resulting from the Internet of Things, is a key point for the forthcoming smart city. In this article, GPS technology, 3G wireless technology and cloud-processing technology are employed to construct a cloud-processing network platform based on the Internet of Car. By this platform, positions and velocity of the running cars, information of traffic flow from fixed monitoring points and transportation videos are combined to be a virtual traffic flow data platform, which is a parallel system with real traffic flow and is able to supply basic data for analysis and decision of intelligent transportation system.展开更多
In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by th...In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.展开更多
嵌合抗原受体T细胞(chimeric antigen receptor T cell,CAR-T)是通过基因工程技术将自体或异体T细胞改造成针对肿瘤特异性抗原的新型杀伤细胞,具有特异性强、效率高、非MHC限制等优点,在复发/难治性血液系统肿瘤和部分实体瘤中取得了良...嵌合抗原受体T细胞(chimeric antigen receptor T cell,CAR-T)是通过基因工程技术将自体或异体T细胞改造成针对肿瘤特异性抗原的新型杀伤细胞,具有特异性强、效率高、非MHC限制等优点,在复发/难治性血液系统肿瘤和部分实体瘤中取得了良好的治疗效果。CAR-T细胞制备流程包括细胞分离和纯化、活化和分化、基因修饰、体外扩增、表型质控、保存和回输。近年来,随着流式细胞术的迅速发展,使其广泛应用于CAR-T细胞治疗的各个环节,包括治疗前筛查、体外制备和回输后监测,并在其创新优化过程中发挥着重要的作用。展开更多
基金supported by National Basic Research Program of China (973 Program) 2012CB821200 (2012CB821206)National Natural Science Foundation under Grant No. 61170113, No.91024001, No.61070142+1 种基金Beijing Natural Science Foundation(No.4111002)KM201010011006, PHR201008242
文摘Internet of Car, resulting from the Internet of Things, is a key point for the forthcoming smart city. In this article, GPS technology, 3G wireless technology and cloud-processing technology are employed to construct a cloud-processing network platform based on the Internet of Car. By this platform, positions and velocity of the running cars, information of traffic flow from fixed monitoring points and transportation videos are combined to be a virtual traffic flow data platform, which is a parallel system with real traffic flow and is able to supply basic data for analysis and decision of intelligent transportation system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372166,11372147,61074142,and 11072117)the Scientific Research Fund of Zhejiang Province,China(Grant No.LY13A010005)+1 种基金the Disciplinary Project of Ningbo City,China(Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China,and the Government of the Hong Kong Administrative Region,China(Grant No.119011)
文摘In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.
文摘嵌合抗原受体T细胞(chimeric antigen receptor T cell,CAR-T)是通过基因工程技术将自体或异体T细胞改造成针对肿瘤特异性抗原的新型杀伤细胞,具有特异性强、效率高、非MHC限制等优点,在复发/难治性血液系统肿瘤和部分实体瘤中取得了良好的治疗效果。CAR-T细胞制备流程包括细胞分离和纯化、活化和分化、基因修饰、体外扩增、表型质控、保存和回输。近年来,随着流式细胞术的迅速发展,使其广泛应用于CAR-T细胞治疗的各个环节,包括治疗前筛查、体外制备和回输后监测,并在其创新优化过程中发挥着重要的作用。