为实现汽车前围板隔声薄弱部位的准确识别,文章提出了基于快速傅里叶变换(Fast Fourier Transform,FFT)和正交匹配追踪(Orthogonal Matching Pursuit,OMP)的反卷积(Deconvolution Approach for the Mapping of Acoustic Sources,DAMAS)...为实现汽车前围板隔声薄弱部位的准确识别,文章提出了基于快速傅里叶变换(Fast Fourier Transform,FFT)和正交匹配追踪(Orthogonal Matching Pursuit,OMP)的反卷积(Deconvolution Approach for the Mapping of Acoustic Sources,DAMAS)波束形成方法(FFT-OMP-DAMAS)。该方法基于声源稀疏分布假设,利用正交匹配追踪思想求解反卷积问题,并进一步结合傅里叶变换和点扩散函数空间转移不变假设降低计算维度。在混响室-消声室内,分别利用延迟求和方法,DAMAS方法和FFT-OMP-DAMAS方法进行了某汽车前围板隔声薄弱部位识别试验,结果表明:FFTOMP-DAMAS方法能够有效抑制旁瓣和伪源,有效缩减主瓣宽度,从而准确识别汽车前围板隔声薄弱部位,且相较于传统的DAMAS方法,文中提出的FFT-OMP-DAMAS方法能获得更清晰的成像结果,计算效率有了明显提高。展开更多
文摘为实现汽车前围板隔声薄弱部位的准确识别,文章提出了基于快速傅里叶变换(Fast Fourier Transform,FFT)和正交匹配追踪(Orthogonal Matching Pursuit,OMP)的反卷积(Deconvolution Approach for the Mapping of Acoustic Sources,DAMAS)波束形成方法(FFT-OMP-DAMAS)。该方法基于声源稀疏分布假设,利用正交匹配追踪思想求解反卷积问题,并进一步结合傅里叶变换和点扩散函数空间转移不变假设降低计算维度。在混响室-消声室内,分别利用延迟求和方法,DAMAS方法和FFT-OMP-DAMAS方法进行了某汽车前围板隔声薄弱部位识别试验,结果表明:FFTOMP-DAMAS方法能够有效抑制旁瓣和伪源,有效缩减主瓣宽度,从而准确识别汽车前围板隔声薄弱部位,且相较于传统的DAMAS方法,文中提出的FFT-OMP-DAMAS方法能获得更清晰的成像结果,计算效率有了明显提高。