In order to extend the investigation of the characteristics of desert shrub liquefaction and the structure of liquefied desert shrubs, we studied the liquefaction of Salixpsammophila and Caragana intermedia in the pre...In order to extend the investigation of the characteristics of desert shrub liquefaction and the structure of liquefied desert shrubs, we studied the liquefaction of Salixpsammophila and Caragana intermedia in the presence of phenol and used FTIR analysis on unliquefied and liquefied S. psammophila and C. intermedia. The results showed that the liquefaction effects are enhanced with an increase in temperature, catalyst content and liquid ratio. FTIR analysis proved that more active functional groups appeared after S. psammophila and C. intermedia were liquefied in the presence of phenol. These results can provide a theoretical basis for the further utilization of liquefied S. psammophila and C. intermedia and the development of desert shrubs in a new utilization field.展开更多
Maintaining the stability of exotic sand-binding shrub has become a large challenge in arid and semi-arid grassland ecosystems in northern China.We investigated two kinds of shrublands with different BSCs(biological s...Maintaining the stability of exotic sand-binding shrub has become a large challenge in arid and semi-arid grassland ecosystems in northern China.We investigated two kinds of shrublands with different BSCs(biological soil crusts)cover in desert steppe in Northwest China to characterize the water sources of shrub(Caragana intermedia Kuang et H.C.Fu)and grass(Artemisia scoparia Waldst.et Kit.)by stable 18O isotopic.Our results showed that both shrublands were subject to persistent soil water deficiency from 2012 to 2017,the minimum soil depth with CV(coefficient of variation)<15% and SWC(soil water content)<6% was 1.4 m in shrubland with open areas lacking obvious BSC cover,and 0.8 m in shrubland covered by mature BSCs.For C.intermedia,a considerable proportion of water sources pointed to the surface soil.Water from BSCs contributed to averages 22.9%and 17.6%of the total for C.intermedia and A.scoparia,respectively.C.intermedia might use more water from BSCs in rainy season than dry season,in contrast to A.scoparia.The relationship between shrub(or grass)and soil water by δ^(18)O shown significant differences in months,which partly verified the potential trends and relations covered by the high variability of the water source at seasonal scale.More fine roots at 0-5 cm soil layer could be found in the surface soil layer covered by BSCs(8000 cm/m^(3))than without BSCs(3200 cm/m^(3)),which ensured the possibility of using the surface soil water by C.intermedia.The result implies that even under serious soil water deficiency,C.intermedia can use the surface soil water,leading to the coexistence between C.intermedia and A.scoparia.Different with the result from BSCs in desert areas,the natural withdrawal of artificial C.intermedia from desert steppe will be a long-term process,and the highly competitive relationship between shrubs and grasses also determines that its habitat will be maintained in serious drought state for a long time.展开更多
基金This study was financially supported by the Natural Science Foundation of Inner Mongolia(No.200508010603).
文摘In order to extend the investigation of the characteristics of desert shrub liquefaction and the structure of liquefied desert shrubs, we studied the liquefaction of Salixpsammophila and Caragana intermedia in the presence of phenol and used FTIR analysis on unliquefied and liquefied S. psammophila and C. intermedia. The results showed that the liquefaction effects are enhanced with an increase in temperature, catalyst content and liquid ratio. FTIR analysis proved that more active functional groups appeared after S. psammophila and C. intermedia were liquefied in the presence of phenol. These results can provide a theoretical basis for the further utilization of liquefied S. psammophila and C. intermedia and the development of desert shrubs in a new utilization field.
基金This research was funded by the National Natural Science Foundation of China(32060313,31760707).
文摘Maintaining the stability of exotic sand-binding shrub has become a large challenge in arid and semi-arid grassland ecosystems in northern China.We investigated two kinds of shrublands with different BSCs(biological soil crusts)cover in desert steppe in Northwest China to characterize the water sources of shrub(Caragana intermedia Kuang et H.C.Fu)and grass(Artemisia scoparia Waldst.et Kit.)by stable 18O isotopic.Our results showed that both shrublands were subject to persistent soil water deficiency from 2012 to 2017,the minimum soil depth with CV(coefficient of variation)<15% and SWC(soil water content)<6% was 1.4 m in shrubland with open areas lacking obvious BSC cover,and 0.8 m in shrubland covered by mature BSCs.For C.intermedia,a considerable proportion of water sources pointed to the surface soil.Water from BSCs contributed to averages 22.9%and 17.6%of the total for C.intermedia and A.scoparia,respectively.C.intermedia might use more water from BSCs in rainy season than dry season,in contrast to A.scoparia.The relationship between shrub(or grass)and soil water by δ^(18)O shown significant differences in months,which partly verified the potential trends and relations covered by the high variability of the water source at seasonal scale.More fine roots at 0-5 cm soil layer could be found in the surface soil layer covered by BSCs(8000 cm/m^(3))than without BSCs(3200 cm/m^(3)),which ensured the possibility of using the surface soil water by C.intermedia.The result implies that even under serious soil water deficiency,C.intermedia can use the surface soil water,leading to the coexistence between C.intermedia and A.scoparia.Different with the result from BSCs in desert areas,the natural withdrawal of artificial C.intermedia from desert steppe will be a long-term process,and the highly competitive relationship between shrubs and grasses also determines that its habitat will be maintained in serious drought state for a long time.