Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achie...The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.展开更多
As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a cruc...As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a crucial element in the advancement of green and low-carbon initiatives in China’s major cities and the realization of a carbon-neutral vision.By analyzing the relationship between carbon emission reduction and urban landscaping,the paper sorts out and summarizes the basic principles of urban landscaping design,proposes the role of landscape design in urban landscaping,and plans countermeasures for carbon reduction in urban landscaping,with a view to optimizing the construction and management of urban landscaping.展开更多
The behavior of monazite concentrate reduced by carbon, especially the decomposed procedure of rare earth phosphates, was investigated by X-ray diffraction, electron probe, TG method and chemical analysis. The results...The behavior of monazite concentrate reduced by carbon, especially the decomposed procedure of rare earth phosphates, was investigated by X-ray diffraction, electron probe, TG method and chemical analysis. The results show that rare earth phosphates in monazite concentrate can be reduced to their oxides, among them the decomposition processes of cerium phosphate are not in step with lanthanum phosphate, neodymium phosphate and so on, and the phosphorus was volatilized into air in simple form.展开更多
Based on the analysis of primary energy consumption structure in five main provinces or municipalities in China,the factors that affect carbon emissions in the five study areas are analyzed quantitatively and comparat...Based on the analysis of primary energy consumption structure in five main provinces or municipalities in China,the factors that affect carbon emissions in the five study areas are analyzed quantitatively and comparatively with the decomposition analysis method.Empirical results demonstrate that the decomposition models of carbon emissions can be defined as "municipality model" and "provincial model",and the population factor of "municipal model" plays a significant role in carbon emissions than that of "provincial model".Either positive or negative effects of energy structure can be found in five different areas.However,there is a general trend that energy structure effort is becoming more and more important.Based on the characteristics and trends of carbon emissions in different areas,the carbon reduction measures are proposed as well.展开更多
This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine a...This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine and boiler and high self consumption loss,and puts forward and implements optimization and improvement measures such as pressure raising transformation of natural gas system,adjustment of energy consumption structure,reduction of energy consumption cost,improvement of steam production quality and equipment efficiency.The results showed that compared with the fuel consumption in 2018,the consumption of coal coke was reduced by 550000 t,the consumption of natural gas was increased by 170000 t,and the total consumption of fuel gas and fuel oil was increased by 50000 t,equivalent to 246000 t of standard coal;the purchased electricity was increased by about 5×10^(8) kW·h.Green power trading and 14.76 MW distributed photovoltaic projects were carried out.According to the calculation of 1400-1600 h annual power generation in class II photovoltaic areas and the emission factor of North China regional power grid baseline,the annual emission reduction was about 55000 t CO_(2) in 2021.After the above transformation,the goal of zero-coking is achieved;the steam consumption of units is reduced by 21.5%,the steam production of boilers is reduced by 24.9%,and the annual emission reduction is about 760000 t CO_(2),which has achieved good results.展开更多
Since the 21^(st)century,the problem of global warming has been prominent,and the problem of climate change has attracted worldwide attention.All countries have issued urban climate adaptation planning policy document...Since the 21^(st)century,the problem of global warming has been prominent,and the problem of climate change has attracted worldwide attention.All countries have issued urban climate adaptation planning policy documents to address the current climate problem.At the same time,the proposal of the“double carbon”vision allows us to focus on the carbon emission reduction of cities and buildings.In addition to the implementation of the direct carbon reduction approach in the whole life cycle of construction,the functional role of indirect carbon reduction cannot be underestimated.By analyzing the domestic and foreign urban climate adaptation planning policy documents,summarizing the indirect carbon reduction approaches,and analyzing the feasibility of the indirect carbon reduction and emission reduction methods from the perspective of urban climate adaptation planning,the indirect carbon reduction adaptation strategy is proposed,which provides a reference for the implementation of urban climate adaptation planning and the target completion of reaching the carbon neutralization and peak on time.展开更多
In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic l...In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic logic of carbon reduction in the industrial chain is analyzed,and then the specific strategies for carbon reduction in the industrial chain are proposed,including:reducing the use of fossil energy and vigorously developing the new energy industry;reducing carbon through energy conservation,industrial upgrading,development of circular economy,and application of carbon capture technology;reducing carbon through low-carbon transformation of logistics industry,innovation of trading methods,and promotion of low-carbon green consumption.The external guarantee system for carbon reduction includes the introduction of relevant policies,laws and regulations,and the use of carbon emission trading mechanism.展开更多
At the intersection of the“dual carbon”goal and the era of digital intelligence(DI),exploring the synergy between pollution and carbon reduction(SPCR)within the context of DI is important for promoting a comprehensi...At the intersection of the“dual carbon”goal and the era of digital intelligence(DI),exploring the synergy between pollution and carbon reduction(SPCR)within the context of DI is important for promoting a comprehensive green transformation of economic and social development.This study,based on urban panel data from 281 prefecture-level cities in China's Mainland from 2010 to 2020,developed a DI indicator system for these cities and employed a double machine learning algorithm for the first time to investigate the intrinsic mechanisms and incentivizing effects of DI on SPCR.The results showed that:①DI significantly promotes SPCR.②Mechanism tests demonstrated that DI can indirectly enhance SPCR by optimizing resource allocation and reinforcing government interventions.③Further analysis showed that the impact of DI on SPCR was more substantial in regions with lower levels of economic and environmental competition.Moreover,the SPCR driven by DI exhibited heterogeneity,characterized by stronger effects in“resource-based cities>non resource-based cities”and“non-capital economic zones>capital economic zones”.The conclusions of this study hold significant implications for fully harnessing the synergy between digitization and intelligence to empower SPCR.In addition,the findings are valuable for the government’s integrated promotion of the“dual carbon”goal and the“digital China”strategy.展开更多
Carbon emissions associated with buildings are a major source of urban emissions. To put forward the methods and strategies to curb carbon emissions from urban building stock, it is not only necessary to establish a c...Carbon emissions associated with buildings are a major source of urban emissions. To put forward the methods and strategies to curb carbon emissions from urban building stock, it is not only necessary to establish a carbon emission calculation method for fine statistical analysis, but also to evaluate carbon emissions of urban planning schemes with applicable indexes. Currently,researches mainly focus on carbon emissions of individual buildings. When expanded to urban building stock, the calculation faces the lack of basic data, inadequate spatial analysis and unspecific carbon reduction indexes. Therefore, this study proposes a bottom-up calculation method for urban building stock, conducts spatial analysis based on carbon balance of urban grids, reveals the coupling mechanism between urban carbon reduction indexes and grid carbon emissions, and systematically establishes a carbon-reduction-oriented urban planning method that comprises calculation, analysis and evaluation, which is applied to Xi'an,China. This study provides a theoretical reference for cities to formulate carbon reduction targets and implement planning strategies by evaluating and predicting carbon emissions from urban building stock.展开更多
Power grids play a crucial role in connecting electricity suppliers and consumers.They facilitate efficient power transmission and energy management,significantly contributing to the transition toward low-carbon pract...Power grids play a crucial role in connecting electricity suppliers and consumers.They facilitate efficient power transmission and energy management,significantly contributing to the transition toward low-carbon practices across both upstream and downstream sectors.Effectively managing carbon reduction in the power industry is essential for enhancing carbon reduction efficiency and achieving dual-carbon goals.Recent studies have focused on the outcomes of carbon reduction efforts rather than the management process.However,when power grids prioritize the process of carbon reduction in their management,they are more likely to achieve better results.To address this gap,we propose an evaluation model for managing carbon reduction activities in power grids,comprising the carbon management efficiency(CME)module based on the maturity model and the carbon reduction efficiency(CRE)module based on the entropy method.The CME module provides a scorecard corresponding to a detailed and continuous evaluation model for carbon management processes to calculate its performance.Simultaneously,the CRE module relates carbon reduction results to the development direction of the government and power grid,allowing for effective adjustments and updates based on actual situations.The evaluation model was applied to provincial power grids within the China Central Power Grid.The results reveal that despite some fluctuations in carbon reduction performance,provincial power grids within the China Central Power Grid have made continuous progress in carbon reduction efforts.According to the synergy model,there is evidence suggesting that power grids are steadily improving their carbon reduction performance,and a more organized approach would lead to a greater degree of synergy.The evaluation model applies to power grids,and its framework can be extended to other industries,providing a theoretical reference for evaluating their carbon reduction efforts.展开更多
Promoting industrial carbon reduction is an inevitable step for achieving the Chinese carbon peak and neutrality targets.Based on the industrial energy consumption data of Shaanxi Province from 2011 to 2020,this study...Promoting industrial carbon reduction is an inevitable step for achieving the Chinese carbon peak and neutrality targets.Based on the industrial energy consumption data of Shaanxi Province from 2011 to 2020,this study uses the IPCC calculation method to calculate the industrial carbon emissions in Shaanxi Province.The prediction model for industrial carbon emissions in Shaanxi Province was constructed based on the STIRPAT model from three aspects:population,economy,and technology.By setting three scenario models,the industrial carbon emissions from 2021 to 2035 and the time to achieve peak carbon neutrality were then predicted.The results show that the industry in Shaanxi Province cannot achieve a carbon peak under the baseline scenario,although it can achieve carbon peaking in 2030 under a low-carbon scenario or in 2025 under an enhanced low-carbon scenario.The predicted carbon peak values are 209.11 million t and 188.36 million t,respectively.Based on the results of this study,four policy recommendations are proposed:(1)strengthen publicity and education efforts to increase public participation in energy conservation and emission reduction;(2)promote the green transformation of industry and develop a green economy,including the active development of energy-saving and emission reduction technologies;(3)accelerate the implementation of industrial carbon reduction;and(4)promote the development and utilization of clean energy and increase efforts to adjust the energy structure.展开更多
In recent years,the“power restriction”measures were taken in many localities,industrial electricity consumption was interrupted,mainly in the“two high”(high energy consumption and high pollutant emission)enterpris...In recent years,the“power restriction”measures were taken in many localities,industrial electricity consumption was interrupted,mainly in the“two high”(high energy consumption and high pollutant emission)enterprises.Take the“power restriction”event in 2021 as an example,this event affected a wide range of regions and disrupted people’s livelihood.It not only refers to the power switch and rationing measures taken by individual regions,but also includes differentiated policies implemented by over 20 provinces to limit power supply and industrial production.This paper investigated in detail and summarized the different requirements of power restriction across the country,through the comparison of annual growth rates of power generation and industrial added value,the comparison results of energy intensity,electricity production,power consumption and the industrial growth rate in each province are analyzed.Industrial enterprises and related industrial chains were most heavily affected by the“power restriction”event,mainly in steel,cement,electrolytic aluminum,industrial silicon,textile printing and dyeing,chemical fiber,chemical and other enterprises with high energy consumption and high pollutants emission.The measures to limit electricity will affect the normal production of enterprises to a certain extent,leading to not only the decrease of production efficiency,but also the increase of energy consumption and pollutant emission per unit product.Energy management measures such as differentiated electricity price have limited effect on the output of“two high”industrial products,and the economic leverage of differentiated electricity price is gradually being diluted by the price rise of end products.This paper analyzed the reasons and explored several key problems that need special attention.then recommended certain countermeasures for its appropriate application in the future.展开更多
Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore ...Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.展开更多
Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,t...Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,this paper constructs a basic regression model to study the"carbon reduction"effect,mechanism of action,and heterogeneity of green finance.The study finds that:the development of green finance significantly inhibits carbon emissions and has an obvious"carbon reduction"effect;green technology innovation has a mediating effect on the carbon emission reduction effect of green finance;in regions with a high level of economic development or a high degree of marketization,the"carbon reduction"effect of green finance is significant.展开更多
Greenhouse gases, particularly the carbon dioxide, cause global warming and extreme weather, which has become a serious threat to human beings. The steel industry creates enormous amounts of carbon emission and has tr...Greenhouse gases, particularly the carbon dioxide, cause global warming and extreme weather, which has become a serious threat to human beings. The steel industry creates enormous amounts of carbon emission and has tremendous potential in carbon reduction. Considering the consistently increasing demand of iron and steel, to obtain significant carbon reduction by reducing the steel production is not practical, thus the development and implementa- tion of carbon reduction programs and technologies is important for the steel industry. Despite the significant poten- tial of carbon reduction in the steel industry, ironmaking and steelmaking processes are complex. Therefore, resear- ches and developments for the carbon reduction must focus on key processes. Here, key processes and technologies adopted in ULCOS program in EU, COURSE 50 program in Japan, POSCO program in South Korea, AISI pro- grams in US and other carbon reduction programs are summarized and evaluated, and feasible suggestions for carbon reduction in developing countries are presented. If effective measures can be referred to and taken in developing coun- tries, global carbon emission can be greatly reduced.展开更多
This paper presents a novel approach in synthesizing SiO_2-Fe_3O_4magnetic carrier with high stability.The Fe_3O_4 magnetic powders were synthesized via onestep method named carbon reduction method. The advantages of ...This paper presents a novel approach in synthesizing SiO_2-Fe_3O_4magnetic carrier with high stability.The Fe_3O_4 magnetic powders were synthesized via onestep method named carbon reduction method. The advantages of the methods are of simple process, none lead-in pollution agent, low cost and adaptation to large-lot production. The stability of the magnetic powders is improved through modifying the Fe_3O_4 with SiO_2 in solation method.The results of the characterizations show that the superparamagnetic SiO_2-Fe_3O_4sub-microparticles(~600 nm)with saturation intensity of 36.4 m A·m^2·g^(-1)are obtained successfully. Moreover, the quantitating, repeatability and high stability of the carbon reduction method are demonstrated as well.展开更多
The determination of carbon emission from foundation pit engineering is a tough and complex project owing to its characteristics including large material consumption,short use time,difficult recycling and no operation...The determination of carbon emission from foundation pit engineering is a tough and complex project owing to its characteristics including large material consumption,short use time,difficult recycling and no operation stage.To overcome these limitations,the calculation boundary and calculation method for carbon emission of foundation pit project are defined in this paper,which is successfully applied in the carbon emission analysis of the actual engineering project,i.e.the construction of large-scale foundation pit of Kunming comprehensive transportation international hub.All the carbon emissions coresponding to four working stages including building materials production,building materials transportation,construction and demolition were calculated and anatomized.The results revealed that the content of CO_(2) released in the stage of building materials production accounts for 89.3%of the total carbon emission,which means the amount of building materials consumed in the engineering project is the crucial factor to control the carbon emission.Besides,two kinds of carbon reduction measures,i.e.optimization design of support scheme and recycling waste materials of internal support demolition,were explored by analyzing the proportion and average value of carbon emission from different sub project of the support structure.A pronounced effect of carbon reduction was achieved.Furthermore,both a fast calculation method of carbon emission factor of unit work volume and general carbon reduction measures are proposed in this paper,which could provide a reference and new viewpoint for the engineers and designers to calculate and analyze the carbon emission and to take effective carbon reduction measures.展开更多
Chinese efforts to lower carbon emissions through environmentally friendly means begin gaining momentum Efforts to curb carbon emissions continue to take shape as China adheres to its pledge for a brighter, greener fu...Chinese efforts to lower carbon emissions through environmentally friendly means begin gaining momentum Efforts to curb carbon emissions continue to take shape as China adheres to its pledge for a brighter, greener future. More importantly, as environmental measures take hold and展开更多
The exploration of efficient electrocatalysts for the reduction of CO2 to C2H4 is of significant importance but is also a challenging subject.Cu-based bimetallic catalysts are extremely promising for efficient CO2 red...The exploration of efficient electrocatalysts for the reduction of CO2 to C2H4 is of significant importance but is also a challenging subject.Cu-based bimetallic catalysts are extremely promising for efficient CO2 reduction.In this work,we synthesize a series of porous bimetallic Cu–Sb alloys with different compositions for the catalytic reduction of CO2 to C2H4.It is demonstrated that the alloy catalysts are much more efficient than the pure Cu catalyst.The performance of the alloy catalysts depended strongly on the composition.Further,the alloy with a Cu:Sb ratio of 10:1 yielded the best results;it exhibited a high C2H4 Faradaic efficiency of 49.7%and a high current density of 28.5 mA cm?2 at?1.19 V vs.a reversible hydrogen electrode(RHE)in 0.1 M KCl solution.To the best of our knowledge,the electrocatalytic reduction of CO2 to C2H4 using Cu–Sb alloys as catalysts has not been reported.The excellent performance of the porous alloy catalyst is attributed to its favorable electronic configuration,large surface area,high CO2 adsorption rate,and fast charge transfer rate.展开更多
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
基金supported by the National Key Research and Development Programs(2021YFB3704201 and 2021YFB3700902).
文摘The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.
文摘As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a crucial element in the advancement of green and low-carbon initiatives in China’s major cities and the realization of a carbon-neutral vision.By analyzing the relationship between carbon emission reduction and urban landscaping,the paper sorts out and summarizes the basic principles of urban landscaping design,proposes the role of landscape design in urban landscaping,and plans countermeasures for carbon reduction in urban landscaping,with a view to optimizing the construction and management of urban landscaping.
文摘The behavior of monazite concentrate reduced by carbon, especially the decomposed procedure of rare earth phosphates, was investigated by X-ray diffraction, electron probe, TG method and chemical analysis. The results show that rare earth phosphates in monazite concentrate can be reduced to their oxides, among them the decomposition processes of cerium phosphate are not in step with lanthanum phosphate, neodymium phosphate and so on, and the phosphorus was volatilized into air in simple form.
基金Project supported by the Twelfth Five-Year-Plan on Energy Conservation in Shanghai Colleges and Universitiesthe Shanghai Low-Carbon City Development Project
文摘Based on the analysis of primary energy consumption structure in five main provinces or municipalities in China,the factors that affect carbon emissions in the five study areas are analyzed quantitatively and comparatively with the decomposition analysis method.Empirical results demonstrate that the decomposition models of carbon emissions can be defined as "municipality model" and "provincial model",and the population factor of "municipal model" plays a significant role in carbon emissions than that of "provincial model".Either positive or negative effects of energy structure can be found in five different areas.However,there is a general trend that energy structure effort is becoming more and more important.Based on the characteristics and trends of carbon emissions in different areas,the carbon reduction measures are proposed as well.
文摘This paper analyzes the main problems of Sinopec Beijing Yanshan Petrochemical Co.,Ltd.,such as decentralized steam system layout,many types of fuels,obvious increase in fuel cost,low operation efficiency of turbine and boiler and high self consumption loss,and puts forward and implements optimization and improvement measures such as pressure raising transformation of natural gas system,adjustment of energy consumption structure,reduction of energy consumption cost,improvement of steam production quality and equipment efficiency.The results showed that compared with the fuel consumption in 2018,the consumption of coal coke was reduced by 550000 t,the consumption of natural gas was increased by 170000 t,and the total consumption of fuel gas and fuel oil was increased by 50000 t,equivalent to 246000 t of standard coal;the purchased electricity was increased by about 5×10^(8) kW·h.Green power trading and 14.76 MW distributed photovoltaic projects were carried out.According to the calculation of 1400-1600 h annual power generation in class II photovoltaic areas and the emission factor of North China regional power grid baseline,the annual emission reduction was about 55000 t CO_(2) in 2021.After the above transformation,the goal of zero-coking is achieved;the steam consumption of units is reduced by 21.5%,the steam production of boilers is reduced by 24.9%,and the annual emission reduction is about 760000 t CO_(2),which has achieved good results.
基金Sponsored by General Project of Natural Science Foundation of Beijing City(8202017)Youth Talent Support Program of 2018 Beijing Municipal University Academic Human Resources Development(PXM2018_014212_000043)。
文摘Since the 21^(st)century,the problem of global warming has been prominent,and the problem of climate change has attracted worldwide attention.All countries have issued urban climate adaptation planning policy documents to address the current climate problem.At the same time,the proposal of the“double carbon”vision allows us to focus on the carbon emission reduction of cities and buildings.In addition to the implementation of the direct carbon reduction approach in the whole life cycle of construction,the functional role of indirect carbon reduction cannot be underestimated.By analyzing the domestic and foreign urban climate adaptation planning policy documents,summarizing the indirect carbon reduction approaches,and analyzing the feasibility of the indirect carbon reduction and emission reduction methods from the perspective of urban climate adaptation planning,the indirect carbon reduction adaptation strategy is proposed,which provides a reference for the implementation of urban climate adaptation planning and the target completion of reaching the carbon neutralization and peak on time.
文摘In order to achieve the development goals of emission peak in 2030 and carbon neutrality in 2060,carbon reduction measures should be implemented in the whole industrial chain.Based on the existing research,the basic logic of carbon reduction in the industrial chain is analyzed,and then the specific strategies for carbon reduction in the industrial chain are proposed,including:reducing the use of fossil energy and vigorously developing the new energy industry;reducing carbon through energy conservation,industrial upgrading,development of circular economy,and application of carbon capture technology;reducing carbon through low-carbon transformation of logistics industry,innovation of trading methods,and promotion of low-carbon green consumption.The external guarantee system for carbon reduction includes the introduction of relevant policies,laws and regulations,and the use of carbon emission trading mechanism.
基金funded by the General Program of the National Natural Science Foundation of China [Grant No.72473059]the Ministry of Education Humanities and Social Science Planning Fund Project [Grant No.23YJA790026]+1 种基金the Yunnan Province Basic Research Program General Project [Grant No.202401AT070393]the Innovation and Development Research Think Tank for Resource based Industries at Kunming University of Technology [Grant No.XXZK20-23006].
文摘At the intersection of the“dual carbon”goal and the era of digital intelligence(DI),exploring the synergy between pollution and carbon reduction(SPCR)within the context of DI is important for promoting a comprehensive green transformation of economic and social development.This study,based on urban panel data from 281 prefecture-level cities in China's Mainland from 2010 to 2020,developed a DI indicator system for these cities and employed a double machine learning algorithm for the first time to investigate the intrinsic mechanisms and incentivizing effects of DI on SPCR.The results showed that:①DI significantly promotes SPCR.②Mechanism tests demonstrated that DI can indirectly enhance SPCR by optimizing resource allocation and reinforcing government interventions.③Further analysis showed that the impact of DI on SPCR was more substantial in regions with lower levels of economic and environmental competition.Moreover,the SPCR driven by DI exhibited heterogeneity,characterized by stronger effects in“resource-based cities>non resource-based cities”and“non-capital economic zones>capital economic zones”.The conclusions of this study hold significant implications for fully harnessing the synergy between digitization and intelligence to empower SPCR.In addition,the findings are valuable for the government’s integrated promotion of the“dual carbon”goal and the“digital China”strategy.
基金supported by the National Natural Science Foundation of China(Grant No.51838011)the Opening Fund of State Key Laboratory of Green Building(Grant No.LSZZ202204)。
文摘Carbon emissions associated with buildings are a major source of urban emissions. To put forward the methods and strategies to curb carbon emissions from urban building stock, it is not only necessary to establish a carbon emission calculation method for fine statistical analysis, but also to evaluate carbon emissions of urban planning schemes with applicable indexes. Currently,researches mainly focus on carbon emissions of individual buildings. When expanded to urban building stock, the calculation faces the lack of basic data, inadequate spatial analysis and unspecific carbon reduction indexes. Therefore, this study proposes a bottom-up calculation method for urban building stock, conducts spatial analysis based on carbon balance of urban grids, reveals the coupling mechanism between urban carbon reduction indexes and grid carbon emissions, and systematically establishes a carbon-reduction-oriented urban planning method that comprises calculation, analysis and evaluation, which is applied to Xi'an,China. This study provides a theoretical reference for cities to formulate carbon reduction targets and implement planning strategies by evaluating and predicting carbon emissions from urban building stock.
基金supported by the Science and Technology Program of China Southern Power Grid Co.,Ltd.(Grant No.YNKJXM20222173)the Reserve Talents Program for Middle-aged and Young Leaders of Disciplines in Science and Technology of Yunnan Province,China(Grant No.202105AC160014).
文摘Power grids play a crucial role in connecting electricity suppliers and consumers.They facilitate efficient power transmission and energy management,significantly contributing to the transition toward low-carbon practices across both upstream and downstream sectors.Effectively managing carbon reduction in the power industry is essential for enhancing carbon reduction efficiency and achieving dual-carbon goals.Recent studies have focused on the outcomes of carbon reduction efforts rather than the management process.However,when power grids prioritize the process of carbon reduction in their management,they are more likely to achieve better results.To address this gap,we propose an evaluation model for managing carbon reduction activities in power grids,comprising the carbon management efficiency(CME)module based on the maturity model and the carbon reduction efficiency(CRE)module based on the entropy method.The CME module provides a scorecard corresponding to a detailed and continuous evaluation model for carbon management processes to calculate its performance.Simultaneously,the CRE module relates carbon reduction results to the development direction of the government and power grid,allowing for effective adjustments and updates based on actual situations.The evaluation model was applied to provincial power grids within the China Central Power Grid.The results reveal that despite some fluctuations in carbon reduction performance,provincial power grids within the China Central Power Grid have made continuous progress in carbon reduction efforts.According to the synergy model,there is evidence suggesting that power grids are steadily improving their carbon reduction performance,and a more organized approach would lead to a greater degree of synergy.The evaluation model applies to power grids,and its framework can be extended to other industries,providing a theoretical reference for evaluating their carbon reduction efforts.
基金The Shaanxi Social Science Federation Foundation Project(2021HZ1118)The Shaanxi Normal University Graduate Student InnovationTeam Project(TD2020006Y).
文摘Promoting industrial carbon reduction is an inevitable step for achieving the Chinese carbon peak and neutrality targets.Based on the industrial energy consumption data of Shaanxi Province from 2011 to 2020,this study uses the IPCC calculation method to calculate the industrial carbon emissions in Shaanxi Province.The prediction model for industrial carbon emissions in Shaanxi Province was constructed based on the STIRPAT model from three aspects:population,economy,and technology.By setting three scenario models,the industrial carbon emissions from 2021 to 2035 and the time to achieve peak carbon neutrality were then predicted.The results show that the industry in Shaanxi Province cannot achieve a carbon peak under the baseline scenario,although it can achieve carbon peaking in 2030 under a low-carbon scenario or in 2025 under an enhanced low-carbon scenario.The predicted carbon peak values are 209.11 million t and 188.36 million t,respectively.Based on the results of this study,four policy recommendations are proposed:(1)strengthen publicity and education efforts to increase public participation in energy conservation and emission reduction;(2)promote the green transformation of industry and develop a green economy,including the active development of energy-saving and emission reduction technologies;(3)accelerate the implementation of industrial carbon reduction;and(4)promote the development and utilization of clean energy and increase efforts to adjust the energy structure.
文摘In recent years,the“power restriction”measures were taken in many localities,industrial electricity consumption was interrupted,mainly in the“two high”(high energy consumption and high pollutant emission)enterprises.Take the“power restriction”event in 2021 as an example,this event affected a wide range of regions and disrupted people’s livelihood.It not only refers to the power switch and rationing measures taken by individual regions,but also includes differentiated policies implemented by over 20 provinces to limit power supply and industrial production.This paper investigated in detail and summarized the different requirements of power restriction across the country,through the comparison of annual growth rates of power generation and industrial added value,the comparison results of energy intensity,electricity production,power consumption and the industrial growth rate in each province are analyzed.Industrial enterprises and related industrial chains were most heavily affected by the“power restriction”event,mainly in steel,cement,electrolytic aluminum,industrial silicon,textile printing and dyeing,chemical fiber,chemical and other enterprises with high energy consumption and high pollutants emission.The measures to limit electricity will affect the normal production of enterprises to a certain extent,leading to not only the decrease of production efficiency,but also the increase of energy consumption and pollutant emission per unit product.Energy management measures such as differentiated electricity price have limited effect on the output of“two high”industrial products,and the economic leverage of differentiated electricity price is gradually being diluted by the price rise of end products.This paper analyzed the reasons and explored several key problems that need special attention.then recommended certain countermeasures for its appropriate application in the future.
基金the financial support from the Postdoctoral Science Foundation of China(2022M720131)Spring Sunshine Collaborative Research Project of the Ministry of Education(202201660)+3 种基金Youth Project of Gansu Natural Science Foundation(22JR5RA542)General Project of Gansu Philosophy and Social Science Foundation(2022YB014)National Natural Science Foundation of China(72034003,72243006,and 71874074)Fundamental Research Funds for the Central Universities(2023lzdxjbkyzx008,lzujbky-2021-sp72)。
文摘Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.
文摘Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,this paper constructs a basic regression model to study the"carbon reduction"effect,mechanism of action,and heterogeneity of green finance.The study finds that:the development of green finance significantly inhibits carbon emissions and has an obvious"carbon reduction"effect;green technology innovation has a mediating effect on the carbon emission reduction effect of green finance;in regions with a high level of economic development or a high degree of marketization,the"carbon reduction"effect of green finance is significant.
基金Sponsored by National Key Technology Research and Development Program in 12th Five-year Plan of China(2013BAE07B00)
文摘Greenhouse gases, particularly the carbon dioxide, cause global warming and extreme weather, which has become a serious threat to human beings. The steel industry creates enormous amounts of carbon emission and has tremendous potential in carbon reduction. Considering the consistently increasing demand of iron and steel, to obtain significant carbon reduction by reducing the steel production is not practical, thus the development and implementa- tion of carbon reduction programs and technologies is important for the steel industry. Despite the significant poten- tial of carbon reduction in the steel industry, ironmaking and steelmaking processes are complex. Therefore, resear- ches and developments for the carbon reduction must focus on key processes. Here, key processes and technologies adopted in ULCOS program in EU, COURSE 50 program in Japan, POSCO program in South Korea, AISI pro- grams in US and other carbon reduction programs are summarized and evaluated, and feasible suggestions for carbon reduction in developing countries are presented. If effective measures can be referred to and taken in developing coun- tries, global carbon emission can be greatly reduced.
基金financially supported by the Natural Science Foundation of Science and Technology Agency of Shanxi Province, China (No. 2011011013-2)
文摘This paper presents a novel approach in synthesizing SiO_2-Fe_3O_4magnetic carrier with high stability.The Fe_3O_4 magnetic powders were synthesized via onestep method named carbon reduction method. The advantages of the methods are of simple process, none lead-in pollution agent, low cost and adaptation to large-lot production. The stability of the magnetic powders is improved through modifying the Fe_3O_4 with SiO_2 in solation method.The results of the characterizations show that the superparamagnetic SiO_2-Fe_3O_4sub-microparticles(~600 nm)with saturation intensity of 36.4 m A·m^2·g^(-1)are obtained successfully. Moreover, the quantitating, repeatability and high stability of the carbon reduction method are demonstrated as well.
基金supported by Science and Technology Program of the Ministry of Housing and Urban-Rural Development[2022-S-031]CSCEC1B Technical and Development Plan[Grant No.CSCEC1B-2021-33].
文摘The determination of carbon emission from foundation pit engineering is a tough and complex project owing to its characteristics including large material consumption,short use time,difficult recycling and no operation stage.To overcome these limitations,the calculation boundary and calculation method for carbon emission of foundation pit project are defined in this paper,which is successfully applied in the carbon emission analysis of the actual engineering project,i.e.the construction of large-scale foundation pit of Kunming comprehensive transportation international hub.All the carbon emissions coresponding to four working stages including building materials production,building materials transportation,construction and demolition were calculated and anatomized.The results revealed that the content of CO_(2) released in the stage of building materials production accounts for 89.3%of the total carbon emission,which means the amount of building materials consumed in the engineering project is the crucial factor to control the carbon emission.Besides,two kinds of carbon reduction measures,i.e.optimization design of support scheme and recycling waste materials of internal support demolition,were explored by analyzing the proportion and average value of carbon emission from different sub project of the support structure.A pronounced effect of carbon reduction was achieved.Furthermore,both a fast calculation method of carbon emission factor of unit work volume and general carbon reduction measures are proposed in this paper,which could provide a reference and new viewpoint for the engineers and designers to calculate and analyze the carbon emission and to take effective carbon reduction measures.
文摘Chinese efforts to lower carbon emissions through environmentally friendly means begin gaining momentum Efforts to curb carbon emissions continue to take shape as China adheres to its pledge for a brighter, greener future. More importantly, as environmental measures take hold and
文摘The exploration of efficient electrocatalysts for the reduction of CO2 to C2H4 is of significant importance but is also a challenging subject.Cu-based bimetallic catalysts are extremely promising for efficient CO2 reduction.In this work,we synthesize a series of porous bimetallic Cu–Sb alloys with different compositions for the catalytic reduction of CO2 to C2H4.It is demonstrated that the alloy catalysts are much more efficient than the pure Cu catalyst.The performance of the alloy catalysts depended strongly on the composition.Further,the alloy with a Cu:Sb ratio of 10:1 yielded the best results;it exhibited a high C2H4 Faradaic efficiency of 49.7%and a high current density of 28.5 mA cm?2 at?1.19 V vs.a reversible hydrogen electrode(RHE)in 0.1 M KCl solution.To the best of our knowledge,the electrocatalytic reduction of CO2 to C2H4 using Cu–Sb alloys as catalysts has not been reported.The excellent performance of the porous alloy catalyst is attributed to its favorable electronic configuration,large surface area,high CO2 adsorption rate,and fast charge transfer rate.