期刊文献+
共找到189篇文章
< 1 2 10 >
每页显示 20 50 100
Mangrove wetlands distribution status identification, changing trend analyzation and carbon storage assessment of China 被引量:1
1
作者 Chang Li Fu Wang +5 位作者 Peng Yang Fei-cui Wang Yun-zhuang Hu Yan-lin Zhao Li-zhu Tian Rui-bin Zhao 《China Geology》 CAS CSCD 2024年第1期1-11,共11页
This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are... This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are employed to interpret mangrove distribution from remote sensing images from 2021,utilizing ArcGIS software platform.Furthermore,the carbon storage capacity of mangrove wetlands is quantified using the carbon storage module of InVEST model.Results show that the mangrove wetlands in China covered an area of 278.85 km2 in 2021,predominantly distributed in Hainan,Guangxi,Guangdong,Fujian,Zhejiang,Taiwan,Hong Kong,and Macao.The total carbon storage is assessed at 2.11×10^(6) t,with specific regional data provided.Trends since the 1950s reveal periods of increase,decrease,sharp decrease,and slight-steady increases in mangrove areas in China.An important finding is the predominant replacement of natural coastlines adjacent to mangrove wetlands by artificial ones,highlighting the need for creating suitable spaces for mangrove restoration.This study is poised to guide future mangroverelated investigations and conservation strategies. 展开更多
关键词 MANGROVE WETLAND carbon storage Ecological conservation ArcGIS software platform RESTORATION InVEST model Quantitative analysis Coastal zone of China
下载PDF
Effects of landscape fragmentation of plantation forests on carbon storage in the Loess Plateau,China
2
作者 LEI Hangyu DUAN Dantong +3 位作者 CHEN Yi GUO Huifeng LI Jiangtao LI Xiang 《Journal of Arid Land》 SCIE CSCD 2024年第2期266-281,共16页
Tree plantation and forest restoration are the major strategies for enhancing terrestrial carbon sequestration and mitigating climate change.The Grain for Green Project in China has positively impacted global carbon s... Tree plantation and forest restoration are the major strategies for enhancing terrestrial carbon sequestration and mitigating climate change.The Grain for Green Project in China has positively impacted global carbon sequestration and the trend towards fragmentation of plantation forests.Limited studies have been conducted on changes in plantation biomass and stand structure caused by fragmentation,and the effect of fragmentation on the carbon storage of plantation forests remains unclear.This study evaluated the differences between carbon storage and stand structure in black locust forests in fragmented and continuous landscape in the Ansai District,China and discussed the effects of ecological significance of four landscape indices on carbon storage and tree density.We used structural equation modelling to explore the direct and indirect effects of fragmentation,edge,abiotic factors,and stand structure on above-ground carbon storage.Diameter at breast height(DBH)in fragmented forests was 53.3%thicker,tree density was 40.9%lower,and carbon storage was 49.8%higher than those in continuous forests;for all given DBH>10 cm,the trees in fragmented forests were shorter than those in continuous forests.The patch area had a negative impact on carbon storage,i.e.,the higher the degree of fragmentation,the lower the density of the tree;and fragmentation and distance to edge(DTE)directly increased canopy coverage.However,canopy coverage directly decreased carbon storage,and fragmentation directly increased carbon storage and tree density.In non-commercial forests,fragmentation reduces the carbon storage potential of plantation,and the influence of patch area,edge,and patchy connection on plantation should be considered when follow-up trees are planted and for the plantation management.Thus,expanding the area of plantation patches,repairing the edges of complex-shaped patches,enhancing the connectivity of similar patches,and applying nutrients to plantation forests at regular intervals are recommended in fragmented areas of the Loess Plateau. 展开更多
关键词 landscape fragmentation PLANTATION carbon storage tree allometry tree density structural equation modelling
下载PDF
Predicting carbon storage of mixed broadleaf forests based on the finite mixture model incorporating stand factors,site quality,and aridity index
3
作者 Yanlin Wang Dongzhi Wang +2 位作者 Dongyan Zhang Qiang Liu Yongning Li 《Forest Ecosystems》 SCIE CSCD 2024年第3期276-286,共11页
The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,an... The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests. 展开更多
关键词 Weibull function Finite mixture model Linear seemingly unrelated regression Back propagation neural network carbon storage
下载PDF
Historical Changes and Multi-scenario Prediction of Land Use and Terrestrial Ecosystem Carbon Storage in China
4
作者 AN Yue TAN Xuelan +2 位作者 REN Hui LI Yinqi ZHOU Zhou 《Chinese Geographical Science》 SCIE CSCD 2024年第3期487-503,共17页
Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-R... Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets. 展开更多
关键词 land use change Future Land Use Simulation(FLUS)model carbon storage carbon density dataset land use scenario China
下载PDF
Carbon Storage Dynamics in Lower Shimentan Formation of the Qiantang Sag, East China Sea Shelf Basin: Stratigraphy, Reservoir ‒ Cap Analysis, and Source ‒ Sink Compatibility
5
作者 Kailong Feng Weilin Zhu +6 位作者 Kai Zhong Qiang Fu Weizhen Chen Zengyuan Zhou Guanyu Zhang Ji Teng Zhe Yang 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期565-574,共10页
Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS... Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS) in the East China Sea Shelf Basin, characterized by its extensive area, thick sedimentary strata, and optimal depth, presents distinct geological advantages for carbon dioxide(CO_(2)) storage. Focusing on the lower section of the Shimentan Formation in the Upper Cretaceous of the QTS, this study integrates seismic interpretation and drilling data with core and thin-section analysis. We reveal the vertical variation characteristics of the strata by providing a detailed stratigraphic description. We use petrophysical data to reveal the development characteristics of high-quality carbon-storage layers and favorable reservoircaprock combinations, thereby evaluating the geological conditions for CO_(2) storage in various stratigraphic sections. We identify Layer B of the lower Shimentan Formation as the most advantageous stratum for marine CO_(2) storage. Furthermore, we analyze the carbon emission trends in the adjacent Yangtze River Delta region. Considering the characteristics of the source and sink areas, we suggest a strong correlation between the carbon emission sources of the Yangtze River Delta and the CO_(2) storage area of the QTS, making the latter a priority area for conducting experiments on marine CO_(2) storage. 展开更多
关键词 carbon storage Qiantang Sag Reservoir-cap Source-sink dynamics East China Sea Shelf Basin
下载PDF
Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin,China
6
作者 LIN Yanmin HU Zhirui +5 位作者 LI Wenhui CHEN Haonan WANG Fang NAN Xiongxiong YANG Xuelong ZHANG Wenjun 《Journal of Arid Land》 SCIE CSCD 2024年第1期110-130,共21页
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this... Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas. 展开更多
关键词 carbon storage land use change nighttime light Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model patch-generating land use simulation(PLUS)model geographical detector(Geodetector) Yellow River Basin
下载PDF
Spatially Heterogeneous Response of Carbon Storage to Land Use Changes in Pearl River Delta Urban Agglomeration, China 被引量:4
7
作者 LIU Wei LIU Dianfeng LIU Yang 《Chinese Geographical Science》 SCIE CSCD 2023年第2期271-286,共16页
Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for ... Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for policymakers in developing effective regional conservation policies. Taking the Pearl River Delta Urban Agglomeration(PRDUA) in China as an example, we examined the heterogeneous response of carbon storage to land use changes in 1990–2018 from a combined view of administrative units and physical entities. The results indicate that the primary change in land use was due to the expansion of construction land(5897.16 km2). The carbon storage in PRDUA decreased from 767.34 Tg C in 1990 to 725.42 Tg C in 2018 with a spatial pattern of high wings and the low middle. The carbon storage loss was largely attributed to construction land expansion(55.74%), followed by forest degradation(54.81%). Changes in carbon storage showed significant divergences in different sized cities and hierarchical boundaries. The coefficients of geographically weighted regression(GWR) reveal that the alteration in carbon storage in Guangzhou City was more responsive to changes in construction land(-0.11) compared to other cities, while that in Shenzhen was mainly affected by the dynamics of forest land(8.32). The change in carbon storage was primarily influenced by the conversion of farmland within urban extent(5.05) and the degradation of forest land in rural areas(5.82). Carbon storage changes were less sensitive to the expansion of construction land in the urban center, urban built-up area, and ex-urban built-up area, with the corresponding GWR coefficients of 0.19, 0.04, and 0.02. This study necessitates the differentiated protection strategies of carbon storage in urban agglomerations. 展开更多
关键词 land use change carbon storage Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model hierarchical urban boundaries Pearl River Delta Urban Agglomeration(PRDUA) China
下载PDF
Eff ects of thinning on ecosystem carbon storage and tree-shrub-herb diversity of a low-quality secondary forest in NE China 被引量:2
8
作者 Baoshan Zhang Xibin Dong +2 位作者 Hangfeng Qu Ran Gao Liangliang Mao 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期977-991,共15页
Thinning is a widely used forest management tool but systematic research has not been carried out to verify its eff ects on carbon storage and plant diversity at the ecosystem level.In this study,the eff ect of thinni... Thinning is a widely used forest management tool but systematic research has not been carried out to verify its eff ects on carbon storage and plant diversity at the ecosystem level.In this study,the eff ect of thinning was assessed across seven thinning intensities(0,10,15,20,25,30 and 35%)in a low-quality secondary forest in NE China over a ten-year period.Thinning aff ected the carbon storage of trees,and shrub,herb,and soil layers(P<0.05).It fi rst increased and then decreased as thinning intensity increased,reaching its maximum at 30%thinning.Carbon storage of the soil accounted for more than 64%of the total carbon stored in the ecosystem.It was highest in the upper 20-cm soil layer.Thinning increased tree species diversity while decreasing shrub and herb diversities(P<0.05).Redundancy analysis and a correlation heat map showed that carbon storage of tree and shrub layers was positively correlated with tree diversity but negatively with herb diversity,indicating that the increase in tree diversity increased the carbon storage of natural forest ecosystems.Although thinning decreased shrub and herb diversities,it increased the carbon storage of the overall ecosystem and tree species diversity of secondary forest.Maximum carbon storage and the highest tree diversity were observed at a thinning intensity of 30%.This study provides evidence for the ecological management of natural and secondary forests and improvement of ecosystem carbon sinks and biodiversity. 展开更多
关键词 THINNING carbon storage Plant diversity Forest management NE China
下载PDF
Screening Tree Species for Carbon Storage Potential through Urban Tree Inventory in Planted Vegetation
9
作者 Abdullah Sulaiman Al-Nadabi Hameed Sulaiman 《Open Journal of Forestry》 2023年第1期61-74,共14页
Urban tree inventory is a great tool for gathering data that can be used by different end users. This study attempted to chart the species diversity in planted areas and measure their tree diameter at breast height to... Urban tree inventory is a great tool for gathering data that can be used by different end users. This study attempted to chart the species diversity in planted areas and measure their tree diameter at breast height to screen them for the carbon storage potential. A total of 2860 trees belonging to 36 species were recorded in the planted vegetation in parks and avenue plantation. The dominant species were Azadirachta indicia (25.5%), Conocarpus erectus (19.2%), Ficus spp. (15.5%), Tabebuia rosea (9.2%), Peitophorum pterocarpum (9.0%) and the remaining represents (21.6%) of the tree identified in this study. It was found that the highest contribution of carbon sequestration (CO<sub>2</sub> equivalent) is dominated by the Ficus spp. (30.3%) with a total of 3399.3 tCO<sub>2</sub>eq, followed by Azadirachta indicia (25.4%) with a total of 2845.2 tCO<sub>2</sub>eq and Conocarpus erectus (20.4%) with a total of 2286 tCO<sub>2</sub>eq. The entire area has the capability to sequester around 11,213.3 tCO<sub>2</sub>eq and on average of 3.9 ± 0.1 tCO<sub>2</sub>eq. In accordance with the findings, it is imperative for the preservation of a sustainable environment to have vegetation that has the capacity to store carbon. The study suggests, there is potential to increase carbon sequestration in urban cities through plantation programs on existing and new land uses and along roads. 展开更多
关键词 Tree Inventory Urban Vegetation carbon storage carbon Sequestration SCREENING
下载PDF
Carbon storage and flux for alpine tundra ecosystems in Changbai Mountains,Northeast China
10
作者 王涌翔 魏晶 +2 位作者 吴钢 姜萍 王宏昌 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第2期109-113,共5页
This paper examined the carbon storage and flux of vegetation-litter-soil in alpine tundra ecosystems in Changbai Mountains. Approximately 17251 t·a-1 of carbon was yearly stored in the vegetation and 15043.1 t&#... This paper examined the carbon storage and flux of vegetation-litter-soil in alpine tundra ecosystems in Changbai Mountains. Approximately 17251 t·a-1 of carbon was yearly stored in the vegetation and 15043.1 t·a^-1of carbon flew into soil by litters. The vegetation-litter-soil ecosystem stored 452624 t·a^-1 of carbon, which was the important CO2 sink. The net carbon storage was currently 3146 t·a^-1 in vegetation-litter-soil ecosystem. 展开更多
关键词 carbon storage carbon flux Alpine tundra
下载PDF
Analysis on Variation of Soil Organic Carbon and Total Nitrogen Content and Carbon Storage in the Oasis Cotton Field of Manas River Valley
11
作者 雷军 雷子莹 +1 位作者 林海荣 赵瑞海 《Agricultural Science & Technology》 CAS 2014年第3期499-502,共4页
Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research ar... Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research area and abandoned farmland as a control, the distribution characteristics of soil organic carbon and total nitrogen content in the cotton field of Manas River Val ey in the last 23 years were investigated by using geographic methods. [Result] Presenting vertical distribution, cotton soil organic carbon and total nitrogen content in Manas River Val ey de-creased with the increase of soil depth, and those in 0-30 cm soil layer was sig-nificantly higher than those in soil layer of below 30 cm, while organic carbon stor-age showed the trend of increase. Also in vertical distribution, soil organic carbon and total nitrogen decreased significantly with the increase of soil depth, and soil organic carbon content in abandoned farmland decreased month by month. Howev-er, cotton soil organic carbon storage firstly decreased and then increased in the oasis cotton field that in the early growth of cotton, soil organic carbon in the layers of 0-30 and 30-100 cm decreased to the lowest in the bloom stage, and then or-ganic carbon increased with the reproductive growth of cotton into the later stages. However, due to no input of plant litter in the abandoned farmland, the soil organic carbon storage decreased month by month. There were significantly differences be-tween oasis cotton field and abandoned farmland in organic carbon contents. [Con-clusion] The soil organic carbon content and total nitrogen content in oasis cotton field were significantly higher than those in the abandoned farmland. The soil organ-ic carbon storage increased in the layer of 0-30 cm, while there was no significant change of soil organic carbon and total nitrogen content in the layer of 30-100 cm, which was consistent with the previous study on the distribution characteristics of soil organic carbon and total nitrogen content profile. 展开更多
关键词 Oasis cotton field Soil organic carbon Total nitrogen content Soil or-ganic carbon storage
下载PDF
Carbon Storage Dynamics of Forest Vegetation In Karst Mountain——A Case Study in Youyang Tujia and Miao Autonomous County
12
作者 谢世友 赵娣 《Agricultural Science & Technology》 CAS 2014年第10期1733-1737,共5页
Based on the data in 2002 and 2012 of forest inventory in Chongqing, using a regression model between stand biomass and volume which was appropri-ate for the southwest district, this paper estimated forest vegetation ... Based on the data in 2002 and 2012 of forest inventory in Chongqing, using a regression model between stand biomass and volume which was appropri-ate for the southwest district, this paper estimated forest vegetation carbon storage dynamics in recent 10 years in Youyang Tujia and Miao Autonomous County. And then carbon dynamics of different sorts of vegetation was calculated. The results in-dicated that, in the recent 10 years, total of forest carbon increased strikingly, and among whole species, China fir’s increment was the maximum, among al ages, middle-age forests had the largest increase. Then it can be concluded that, the for-est in Youyang is a carbon sink, and with the growing of young forests and devel-opment of plantation, the function of carbon sink wil rise. 展开更多
关键词 VEGETATION carbon storage Dynamic Youyang Tujia and Miao Autonomous County
下载PDF
Research advance of biomass and carbon storage of poplar in China 被引量:24
13
作者 LIANG Wan-jun HU Hai-qing +1 位作者 LIU Fu-jin ZHANG Da-ming 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第1期75-79,共5页
This paper summarized the studies on biomass production, biomass growth models, biomass measurement, biomass and forest density, as well as carbon storage of poplars in China in recent 20 years. The existing problems ... This paper summarized the studies on biomass production, biomass growth models, biomass measurement, biomass and forest density, as well as carbon storage of poplars in China in recent 20 years. The existing problems on research of poplar biomass are discussed and some suggestions for enhancing biomass of poplars are put forward. 展开更多
关键词 POPLAR BIOMASS carbon storage REVIEW
下载PDF
Comparisons of carbon storages in Cunninghamia lanceolata and Michelia macclurei plantations during a 22-year period in southern China 被引量:17
14
作者 NIU Dong WANG Silong OUYANG Zhiyun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第6期801-805,共5页
Tree species composition was important for carbon storage within the same climate range.To quantify the dynamics of ecosystem carbon allocation as affected by different tree species,we measured the above-and below-gro... Tree species composition was important for carbon storage within the same climate range.To quantify the dynamics of ecosystem carbon allocation as affected by different tree species,we measured the above-and below-ground biomass accumulation in 22 years,as well as the tissue carbon concentrations of trees in Cunninghamia lanceolata plantation and Michelia macclurei plantation.Results indicated that M.macclurei plantation significantly stored more carbon(174.8 tons/hm2) than C.lanceolata plantation(154.3 tons/hm2).Most of the carbon was found in the soil pool(57.1% in M.macclurei plantation,55.2% in C.lanceolata plantation).Tree and soil component of M.macclurei plantation possessed significantly higher carbon storage than that of C.lanceolata plantation(p 〈 0.05).No significant difference was found in the carbon storage of understory and forest floor.These results suggest that the broadleaved species(M.macclurei) possesses greater carbon sequestration potential than the coniferous species(C.lanceolata) in southern China. 展开更多
关键词 Cunninghamia lanceolata plantation Michelia macclurei plantation carbon storage carbon allocation patterns
下载PDF
Spatial Characteristics of Soil Organic Carbon Storage in China's Croplands 被引量:13
15
作者 WANG Shao-Qiang YU Gui-Rui +3 位作者 ZHAO Qian-Jun NIU Dong CHEN Qing-Mei WU Zhi-Feng 《Pedosphere》 SCIE CAS CSCD 2005年第4期417-423,共7页
The soil organic carbon (SOC) pool is the largest component of terrestrial carbon pools. With the construction of a geographically referenced database taken from the second national general soil survey materials and b... The soil organic carbon (SOC) pool is the largest component of terrestrial carbon pools. With the construction of a geographically referenced database taken from the second national general soil survey materials and based on 1546 typical cropland soil profiles, the paddy field and dryland SOC storage among six regions of China were systematically quantified to characterize the spatial pattern of cropland SOC storage in China and to examine the relationship between mean annual temperature, precipitation, soil texture features and SOC content. In all regions, paddy soils had higher SOC storage than dryland soils, and cropland SOC content was the highest in Southwest China. Climate controlled the spatial distribution of SOC in both paddy and dryland soils, with SOC storage increasing with increasing precipitation and decreasing with increasing temperature. 展开更多
关键词 carbon storage CROPLAND soil organic carbon spatial characteristics
下载PDF
Biomass Carbon Storage and Its Sequestration Potential of Afforestation under Natural Forest Protection Program in China 被引量:11
16
作者 ZHOU Wangming Bernard Joseph LEWIS +4 位作者 WU Shengnan YU Dapao ZHOU Li WEI Yawei DAI Limin 《Chinese Geographical Science》 SCIE CSCD 2014年第4期406-413,共8页
Based on the data from China′s Seventh Forest Inventory for the period of 2004–2008, area and stand volume of different types and age-classes of plantation were used to establish the relationship between biomass den... Based on the data from China′s Seventh Forest Inventory for the period of 2004–2008, area and stand volume of different types and age-classes of plantation were used to establish the relationship between biomass density and age of planted forests in different regions of the country. Combined with the plantation area in the first-stage of the Natural Forest Protection(NFP) program(1998–2010), this study calculated the biomass carbon storage of the afforestation in the first-stage of the program. On this basis, the carbon sequestration potential of these forests was estimated for the second stage of the program(2011–2020). Biomass carbon storage of plantation established in the first stage of the program was 33.67 Tg C, which was majority accounted by protection forests(30.26 Tg C). There was a significant difference among carbon storage in different regions, which depended on the relationship of biomass carbon density, forest age and plantation area. Under the natural growth, the carbon storage was forecasted to increase annually from 2011 to 2020, reaching 96.03 Tg C at the end of the second-stage of the program in 2020. The annual growth of the carbon storage was forecasted to be 6.24 Tg C/yr, which suggested that NFP program has a significant potential for enhancing carbon sequestration in plantation forests under its domain. 展开更多
关键词 Natural Forest Protection (NFP) program AFFORESTATION carbon storage carbon sequestration China
下载PDF
A statistical analysis of spatiotemporal variations and determinant factors of forest carbon storage under China's Natural Forest Protection Program 被引量:9
17
作者 Shengnan Wu Jiaqi Li +5 位作者 Wangming Zhou Bernard Joseph Lewis Dapao Yu Li Zhou Linhai Jiang Limin Dai 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期410-419,共10页
The Natural Forest Protection Program(NFPP)is one of the key ecological forestry programs in China.It not only facilitates the improvement of forest ecological quality in NFPP areas,but also plays a significant role i... The Natural Forest Protection Program(NFPP)is one of the key ecological forestry programs in China.It not only facilitates the improvement of forest ecological quality in NFPP areas,but also plays a significant role in increasing the carbon storage of forest ecosystems.The program covers 17 provinces,autonomous regions,and municipalities with correspondingly diverse forest resources and environments,ecological features,engineering measures and forest management regimes,all of which affect regional carbon storage.In this study,volume of timber harvest,tending area,pest-infested forest,firedamaged forest,reforestation,and average annual precipitation,and temperature were evaluated as factors that influence carbon storage.We developed a vector autoregression model for these seven indicators and we studied the dominant factors of carbon storage in the areas covered by NFPP.Timber harvest was the dominant factorinfluencing carbon storage in the Yellow and Yangtze River basins.Reforestation contributed most to carbon storage in the state-owned forest region in Xinjiang.In state-owned forest regions of Heilongjiang and Jilin Provinces,the dominant factors were forest fires and forest cultivation,respectively.For the enhancement of carbon sequestration capacity,a longer rotation period and a smaller timber harvest are recommended for the Yellow and Yangtze River basins.Trees should be planted in stateowned forests in Xinjiang.Forest fires should be prevented in state-owned forests in Heilongjiang,and greater forest tending efforts should be made in the state-owned forests in Jilin. 展开更多
关键词 Forest carbon storage Influencing factors Natural forest protection program Variance decomposition Vector autoregression(VAR) model
下载PDF
Effect of Hydrological Connectivity on Soil Carbon Storage in the Yellow River Delta Wetlands of China 被引量:7
18
作者 FENG Jiuge LIANG Jinfeng +3 位作者 LI Qianwei ZHANG Xiaoya YUE Yi GAO Junqin 《Chinese Geographical Science》 SCIE CSCD 2021年第2期197-208,共12页
Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow ... Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow River Delta,China.We calculated the hydrological connectivity based on the hydraulic resistance and graph theory,and measured soil total carbon and organic carbon under four different hydrological connectivity gradients(Ⅰ0‒0.03,Ⅱ0.03‒0.06,Ⅲ0.06‒0.12,Ⅳ0.12‒0.39).The results showed that hydrological connectivity increased in the north shore of the Yellow River and the south tidal flat from 2007 to 2018,which concentrated in the mainstream of the Yellow River and the tidal creek.High hydrological connectivity was maintained in the wetland restoration area.The soil total carbon storage and organic carbon storage significantly increased with increasing hydrological connectivity fromⅠtoⅢgradient and decreased inⅣgradient.The highest soil total carbon storage of 0‒30 cm depth was 5172.34 g/m^(2),and organic carbon storage 2764.31 g/m^(2)inⅢgradient.The hydrological connectivity changed with temporal and spatial change during 2007‒2018 and had a noticeable impact on soil carbon storage in the Yellow River Delta.The results indicated that appropriate hydrological connectivity,i.e.0.08,could effectively promote soil carbon storage. 展开更多
关键词 coastal wetland hydrological connectivity soil carbon carbon storage spatiotemporal variation the Yellow River Delta
下载PDF
Effects of Rest Grazing on Organic Carbon Storage in Stipa grandis Steppe in Inner Mongolia, China 被引量:7
19
作者 LI Yu-jie ZHU Yan +4 位作者 ZHAO Jian-ning LI Gang WANG Hui LAI Xin YANG Dian-lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第3期624-634,共11页
This study was aimed to evaluate the potential effects of rest grazing on organic carbon storage in Stipa grandis steppe of Inner Mongolia, China. Using potassium dichromate heating method, we analyzed the organic car... This study was aimed to evaluate the potential effects of rest grazing on organic carbon storage in Stipa grandis steppe of Inner Mongolia, China. Using potassium dichromate heating method, we analyzed the organic carbon storage of plant and soil in Stipa grand& steppe after rest grazing for 3, 6, and 9 yr. The results indicated that as the rest grazing ages prolonged, the biomass of aboveground parts, litter and belowground plant parts (roots) of the plant communities all increased, meanwhile the C content of the biomass increased with the rest grazing ages prolonging. For RG0, RG3a, RG6a, and RG9a, C storage in aboveground vegetation were 60.7, 76.9, 82.8 and 122.2 g C m2, respectively; C storage of litter were 5.1, 5.8, 20.4 and 25.5 g C m^-2, respectively; C storage of belowground roots (0-100 cm) were 475.2, 663.0, 1 115.0 and 1 867.3 g C m^-2, respectively; C storage in 0-100 cm soil were 13.97, 15.76, 18.60 and 32.41 kg C m^-2, respectively. As the rest grazing ages prolonged, the organic C storage in plant communities and soil increased. The C storage ofbelowground roots and soil organic C was mainly concentrated in 0-40 cm soil body. The increased soil organic C for RG3a accounted for 89.8% of the increased carbon in vegetation-soil system, 87.2% for RG6a, and 92.6% for RG9a. From the perspective of C sequestration cost, total cost for RG3a, RG6,, and RG9a were 2 903.4, 5 806.8 and 8 710.2 CNY haq, respectively. The cost reduced with the extension of rest grazing ages, 0.15 CNY kg^-1 C for RG3a, 0.11 CNY kg-~ C for RG6a and 0.04 CNY kg℃ for RG9a. From the growth characteristics of grassland plants, the spring was one of the two avoided grazing periods, timely rest grazing could effectively restore and update grassland vegetation, and was beneficial to the sustainable use of grassland. Organic C storage for RG9a was the highest, while the cost of C sequestration was the lowest. Therefore, spring rest grazing should be encouraged because it was proved to be a very efficient grassland use pattern. 展开更多
关键词 rest grazing Stipa grandis steppe organic carbon density organic carbon storage carbon sequestration benefits
下载PDF
Ecosystem carbon storage and sink/source of temperate forested wetlands in Xiaoxing’anling, northeast China 被引量:8
20
作者 Biao Wang Changcheng Mu +3 位作者 Huicui Lu Na Li Yan Zhang Li Ma 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第3期839-849,共11页
Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sin... Wetlands play an important role in the global carbon cycle, but there are still considerable uncertainties in the estimation of wetland carbon storage and a dispute on whether wetlands are carbon sources or carbon sinks. Xiaoxing’anling are one of several concentrated distribution areas of forested wetland in China, but the carbon storage and carbon sink/source of forested wetlands in this area is unclear. We measured the ecosystem carbon storage (vegetation and soil), annual net carbon sequestration of vegetation and annual carbon emissions of soil heterotrophic respiration of five typical forested wetland types (alder swamp, white birch swamp, larch swamp, larch fen, and larch bog) distributed along a moisture gradient in this area in order to reveal the spatial variations of their carbon storage and quantitatively evaluate their position as carbon sink or source according to the net carbon balance of the ecosystems. The results show that the larch fen had high carbon storage (448.8 t ha^(−1)) (6.8% higher than the larch bog and 10.5–30.1% significantly higher than other three wetlands (P < 0.05), the white birch swamp and larch bog were medium carbon storage ecosystems (406.3 and 420.1 t ha^(−1)) (12.4–21.8% significantly higher than the other two types (P < 0.0 5), while the alder swamp and larch swamp were low in carbon storage (345.0 and 361.5 t ha^(−1), respectively). The carbon pools of the five wetlands were dominated by their soil carbon pools (88.5–94.5%), and the vegetation carbon pool was secondary (5.5–11.5%). At the same time, their ecosystem net carbon balances were positive (0.1–0.6 t ha^(−1) a^(−1)) because the annual net carbon sequestration of vegetation (4.0–4.5 t ha^(−1) a^(−1)) were higher than the annual carbon emissions of soil heterotrophic respiration (CO_(2) and CH_(4)) (3.8–4.4 t ha^(−1) a^(−1)) in four wetlands, (the alder swamp being the exception), so all four were carbon sinks while only the alder swamp was a source of carbon emissions (− 2.1 t ha^(−1) a^(−1)) due to a degraded tree layer. Our results demonstrate that these forested wetlands were generally carbon sinks in the Xiaoxing’anling, and there was obvious spatial variation in carbon storage of ecosystems along the moisture gradient. 展开更多
关键词 Temperate forested wetlands Ecosystem carbon storage carbon sink or source Xiaoxing’anling of China
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部