期刊文献+
共找到1,588篇文章
< 1 2 80 >
每页显示 20 50 100
Carbon Capture Technologies in OAPEC Member Countries and the Circular Carbon Economy: A Roadmap to Zero Emissions by 2050
1
作者 Salem Baidas 《Open Journal of Energy Efficiency》 2024年第2期25-37,共13页
Several Organization of Arab Petroleum Exporting Countries (OAPEC) member states (OMSs) have updated their nationally determined contributions (NDCs) with the aim of achieving zero carbon emissions by 2050. Carbon neu... Several Organization of Arab Petroleum Exporting Countries (OAPEC) member states (OMSs) have updated their nationally determined contributions (NDCs) with the aim of achieving zero carbon emissions by 2050. Carbon neutrality requires shifting from a linear carbon economy (LCE) to a circular carbon economy (CCE). Carbon capture and storage (CCS) technologies, including reduction, recycle, reuse, removal, and storage technologies, represent an important strategy for achieving such a shift. Herein, we investigate the effects of CCS technology adoption in six OMSs—namely the Kingdom of Saudi Arabia (KSA), Qatar, the United Arab Emirates (UAE), Kuwait, Algeria, and Iraq—by examining their Circular Carbon Economy Index (CCEI) scores, which reflect compliance with CCE-transition policies. Total CCEI, current performance CCEI dimension, and future enabler CCEI dimensions scores were compared among the aforementioned six OMSs and relative to Norway, which was used as a global-high CCEI reference standard. Specifically, CCEI general scope and CCEI oil scope dimension scores were compared. The KSA, Qatar, the UAE, and Kuwait had higher CCEI scores than Algeria and Iraq, reflecting their greater adoption of CCE-transition policies and greater emission-reducing modernization investments. The current performance CCEI scores of Algeria and Iraq appear to be buttressed to some extent by their greater natural carbon sink resources. Based on the findings, we recommend specific actions for OMSs to enhance their CCE transitions and mitigate the negative impacts associated with the associated investments, including: taking rapid practical steps to eliminate carbon oil industry emissions;detailed CCS planning by national oil companies;international cooperation and coordination;and increased investment in domestic CCS utilization infrastructure. 展开更多
关键词 OAPEC PETROLEUM Fossil fuels carbon Capture and Storage Circular carbon Economy
下载PDF
Ash-free coal as fuel for direct carbon fuel cell 被引量:1
2
作者 LEE Injae JIN Sunmi +4 位作者 CHUN Donghyuk CHOI Hokyung LEE Sihyun LEE Kibong YOO Jiho 《Science China Chemistry》 SCIE EI CAS 2014年第7期1010-1018,共9页
This work describes the performance of the direct carbon fuel cell(DCFC)fuelled by ash-free coal.Employing coal in the DCFC might be problematic,mainly because of the ash deposition after the cell reactions.In the stu... This work describes the performance of the direct carbon fuel cell(DCFC)fuelled by ash-free coal.Employing coal in the DCFC might be problematic,mainly because of the ash deposition after the cell reactions.In the study,the carbonaceous ash-free component of coal is obtained,which is then evaluated as the DCFC fuel and compared with raw coal,active carbon,carbon black,and graphite.The electrolyte-supported SOFC structure is adapted to build the DCFC.The DCFC based on the ash-free coal fuel exhibits good performance with regard to the maximum power density,day-by-day measurements,and durability at continuous run.When the carbon fuels are internally gasified to H2 and CO,the power density is generally much improved,compared to N2 pyrolysis environment.The power generation is most likely related to the concentration of pyrolyzed gases as well as the electrochemical reactivity of the solid carbon. 展开更多
关键词 direct carbon fuel cell DCFC ash-free coal coal gasification REFORMING
原文传递
Ship Fuel and Carbon Emission Estimation Utilizing Artificial Neural Network and Data Fusion Techniques
3
作者 Shaohan Wang Xinbo Wang +3 位作者 Yi Han Xiangyu Wang He Jiang Zhexi Zhang 《Journal of Software Engineering and Applications》 2023年第3期51-72,共22页
Ship energy consumption and emission prediction are the main concern of the shipping industry for ship energy efficiency management and pollution gas emission control. And they are attracting more global attention and... Ship energy consumption and emission prediction are the main concern of the shipping industry for ship energy efficiency management and pollution gas emission control. And they are attracting more global attention and research interests because of the increase in global shipping trade volume. As the core of maritime transportation, a large volume of data is collected around ships such as voyage data. Due to the rapid development of computational power and the widely equipped AIS device on ships, the use of maritime big data for improving and monitoring ship’s energy efficiency is becoming possible. In this paper, a fuel consumption and carbon emission model using the artificial neural network (ANN) framework is proposed by using AIS, ship machinery, and weather data. The proposed work is a complete framework including data collection, data cleaning, data clustering and model-building methodology. To obtain the suitable parameters of the model, the number of neurons, data inputs and activate functions were tested on both AIS-based data and MRV-based data for comparison. The results show that the proposed method can provide a solid prediction of ship’s fuel consumption and carbon emissions under varying weather conditions. 展开更多
关键词 Artificial Neural Network Ship fuel Consumption Regression Analysis AIS Container Ship IMO carbon Neutrality
下载PDF
Numerical Simulation of Dynamic Performance of the Molten Carbonate Fuel Cell 被引量:3
4
作者 于立军 袁俊琪 +1 位作者 曹广益 姜秀民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期272-276,共5页
A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fu... A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fuel cell including the distributions of the temperature and the velocity is predicted numerically. Then the experimental data including the output performance of the fuel cell generation system and the temperature distributions are compared. The numerical results are in agreement with the experiment results. 展开更多
关键词 molten carbonate fuel cell computation fluid dynamics numerical simulation
下载PDF
Development and Experimental Research of kW-scale Molten Carbonate Fuel Cells 被引量:3
5
作者 沈承 Zhu +2 位作者 Xinjian Cao Guangyi 《High Technology Letters》 EI CAS 2002年第1期86-91,共6页
A kW-scale molten carbonate fuel cells stack was developed and 800-hours’ operating test and performance experimental research had been done. Utilizing domestic materials completely, we developed NiO cathode and Ni-A... A kW-scale molten carbonate fuel cells stack was developed and 800-hours’ operating test and performance experimental research had been done. Utilizing domestic materials completely, we developed NiO cathode and Ni-Al anode with the active area of 336cm 2 and Υ-LiAlO 2 electrolyte tile and bipolar plate with the area of 900cm 2. The stack was composed of thirty cells, with 62%Li 2CO 3+38%K 2CO 3 as its electrolyte. During the 800 hours’ continuous operating, the performance of the stack was stable. With 99.7%(mole fraction) H 2 as fuel and O 2 from air as oxidant, the average operating voltage of a cell was about 0.72 V. The maximal current density attained to 165mA/cm 2, and the maximal output power attained to 1080 Watt. The whole performance of the stack approached to the international level in the early 90’s. This paper gives the main works and experiments results. 展开更多
关键词 Molten carbonate fuel cells (MCFC) kW-scale Electrode Electrolyte tile DEVELOPMENT
下载PDF
Daily Operation Optimization of a Residential Molten Carbonate Fuel Cell Power System Using Genetic Algorithm 被引量:1
6
作者 李勇 曹广益 余晴春 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3期349-356,共8页
To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-base... To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems. 展开更多
关键词 molten carbonate fuel cell power system fuel consumption operation optimization multi-crossover residential fuel cell genetic algorithm
下载PDF
Study and performance test of 10 kW molten carbonate fuel cell power generation system 被引量:1
7
作者 Chengzhuang Lu Ruiyun Zhang +3 位作者 Guanjun Yang Hua Huang Jian Cheng Shisen Xu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第3期368-376,共9页
The use of high-temperature fuel cells as a power technology can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide.This work explores the performance of a 10 kW high-te... The use of high-temperature fuel cells as a power technology can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide.This work explores the performance of a 10 kW high-temperature molten carbonate fuel cell.The key materials of a single cell were characterized and analyzed using X-ray diffraction and scanning electron microscopy.The results show that the pore size of the key electrode material is 6.5 lm and the matrix material is a-LiAlO_(2).Experimentally,the open circuit voltage of the single cell was found to be 1.23 V.The current density was greater than 100 mA/cm^(2)at an operating voltage of 0.7 V.The 10 kW fuel cell stack comprised 80 single fuel cells with a total area of 2000 cm^(2)and achieved an open circuit voltage of greater than 85 V.The fuel cell stack power and current density could reach 11.7 kW and 104.5 mA/cm2 at an operating voltage of 56 V.The influence and long-term stable operation of the stack were also analyzed and discussed.The successful operation of a 10 kW high-temperature fuel cell promotes the large-scale use of fuel cells and provides a research basis for future investigations of fuel cell capacity enhancement and distributed generation in China. 展开更多
关键词 fuel cell stack Key materials Molten carbonate fuel cell Power generation test
下载PDF
Nonlinear modeling of molten carbonate fuel cell stack and FGA-based fuzzy control 被引量:1
8
作者 戚志东 朱新坚 曹广益 《Journal of Shanghai University(English Edition)》 CAS 2006年第2期144-150,共7页
To improve the performance of fuel cells, the operating temperature of molten carbonate fuel cell (MCFC) stack should be controlled within a specified range. In this paper, with the RBF neural network’s ability of id... To improve the performance of fuel cells, the operating temperature of molten carbonate fuel cell (MCFC) stack should be controlled within a specified range. In this paper, with the RBF neural network’s ability of identifying complex nonlinear systems, a neural network identification model of MCFC stack is developed based on the sampled input-output data. Also, a novel online fuzzy control procedure for the temperature of MCFC stack is developed based on the fuzzy genetic algorithm (FGA). Parameters and rules of the fuzzy controller are optimized. With the neural network identification model, simulation of MCFC stack control is carried out. Validity of the model and the superior performance of the fuzzy controller are demonstrated. 展开更多
关键词 molten carbonate fuel cell (MCFC) neural network genetic algorithm fuzzy genetic algorithms (FGA).
下载PDF
Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts 被引量:1
9
作者 Jos L. Figueiredo Manuel F. R. Pereira 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期195-201,共7页
The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electroca... The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electrocatalysts for fuel cells. In particular, the role played by the surface functional groups in determining the loading, dispersion, oxidation state and stability of the metal phases is addressed. 展开更多
关键词 carbon xerogels fuel cells ELECTROCATALYSTS surface chemistry catalyst supports
下载PDF
Recovery and chemical utilization of carbon dioxide from fossil-fuel burning industrial sources 被引量:1
10
作者 Yin Xiaolong (Department of Applied Chemistry,Taiyuan University of Technology, Taiyuan 030024 , China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1995年第2期129-137,共9页
Recoveryandchemicalutilizationofcarbondioxidefromfossil-fuelburningindustrialsourcesYinXiaolong(Departmentof... Recoveryandchemicalutilizationofcarbondioxidefromfossil-fuelburningindustrialsourcesYinXiaolong(DepartmentofAppliedChemistry,... 展开更多
关键词 carbon dioxide fossil fuel global climate change greenhouse gas.
下载PDF
Study on durability of Pt supported on graphitized carbon under simulated start-up/shut-down conditions for polymer electrolyte membrane fuel cells 被引量:2
11
作者 Won Suk Jung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期326-334,共9页
The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitize... The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitized carbon induced by heat-treatment. The degree of graphitization starts to increase between 900 and 1300 ℃ as evidenced by the change of specific surface area, interlayer spacing, and ID/IG value. Pt nanoparticles are deposited on fresh carbon black(Pt/CB) and carbon heat-treated at 1700 ℃(Pt/HCB17) with similar particle size and distribution. Electrochemical characterization demonstrates that the Pt/HCB17 shows higher activity than the Pt/CB due to the inefficient microporous structure of amorphous carbon for the oxygen reduction reaction. An accelerating potential cycle between 1.0 and 1.5 V for the carbon corrosion is applied to examine durability at a single cell under the practical start-up/shutdown conditions. The Pt/HCB17 catalyst shows remarkable durability after 3000 potential cycles. The Pt/HCB17 catalyst exhibits a peak power density gain of 3%, while the Pt/CB catalyst shows 65% loss of the initial peak power density. As well, electrochemical surface area and mass activity of Pt/HCB17 catalyst are even more stable than those of the Pt/CB catalyst. Consequently, the high degree of graphitization is essential for the durability of fuel cells in practical start-up/shut-down conditions due to enhancing the strong interaction of Pt and π-bonds in graphitized carbon. 展开更多
关键词 Polymer electrolyte membrane fuel ceils Membrane electrolyte assembly carbon corrosion Start-up/shut-down Durability
下载PDF
MICROSTRUCTURE CHARACTERIZATION OF LiCoO_2 COATINGS FOR MOLTEN CARBONATE FUEL CELLS COMPONENTS
12
作者 Klein Lisa 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第2期182-185,共4页
The sol-gel process, sing aqueous solutions, is used for dip coating ontosubstrates of 316L stainless steel. A suitable coating of Li CoO_2 is achieved by varying thethickness and heat treating at 650 deg C for 3 h. T... The sol-gel process, sing aqueous solutions, is used for dip coating ontosubstrates of 316L stainless steel. A suitable coating of Li CoO_2 is achieved by varying thethickness and heat treating at 650 deg C for 3 h. Thermal analysis, X-ray diffraction analysis andSEM are carried out to characterize the microstructure of the coatings. The results show that thecoating transforms from an amorphous gel to crystalline phases above 350 deg C, and show a porousstructure. The phase transition mechanism is discussed. 展开更多
关键词 Molten carbonate fuel cells SOL-GEL LiCoO_2 coating Crystalline phasetransition
下载PDF
La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9) composite electrodes as anodes in LaGaO_(3)-based direct carbon solid oxide fuel cells 被引量:2
13
作者 CHEN Tian-yu XIE Yong-min +7 位作者 LU Zhi-bin WANG Liang CHEN Zhe-qin ZHONG Xiao-cong LIU Jia-ming WANG Rui-xiang XU Zhi-feng OUYANG Shao-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1788-1798,共11页
Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for... Direct carbon solid oxide fuel cells(DC-SOFCs)are promising,green,and efficient power-generating devices that are fueled by solid carbons and comprise all-solid-state structures.Developing suitable anode materials for DC-SOFCs is a substantial scientific challenge.Herein we investigated the use of La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9)(LSCM−GDC)composite electrodes as anodes for La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3)-δelectrolyte-based DC-SOFCs,with Camellia oleifera shell char as the carbon fuel.The LSCM−GDC-anode DC-SOFC delivered a maximum power density of 221 mW/cm^(2) at 800℃ and it significantly improved to 425 mW/cm^(2) after Ni nanoparticles were introduced into the LSCM−GDC anode through wet impregnation.The microstructures of the prepared anodes were characterized,and the stability of the anode in a DC-SOFC and the influence of catalytic activity on open circuit voltage were studied.The above results indicate that LSCM–GDC anode is promising to be applied in DC-SOFCs. 展开更多
关键词 direct carbon solid oxide fuel cells anode material La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3)-δ−Ce_(0.8)Gd_(0.2)O_(1.9) composite electrodes Ni nanoparticles
下载PDF
Advance on Molten Carbonate Fuel Cell and Research on Some Key Problems
14
作者 ZHU Li-ya, GUO Jing-kang, YAO Li-feng, DING Yi-min Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200436, China 《Advances in Manufacturing》 SCIE CAS 2000年第S1期178-182,共5页
The paper is a summary of researches on molten carbonate fuel cell. On the same time, several key technology difficulties are discussed. Combining with our recent studies, the accessements to these problems are given... The paper is a summary of researches on molten carbonate fuel cell. On the same time, several key technology difficulties are discussed. Combining with our recent studies, the accessements to these problems are given out and they will be references for future works. 展开更多
关键词 molten carbonate fuel cell (MCFC) fuel cell molten salt
下载PDF
Melamine modified carbon felts anode with enhanced electrogenesis capacity toward microbial fuel cells 被引量:5
15
作者 Yang'en Xie Zhaokun Ma +2 位作者 Huaihe Song Zachary A.Stoll Pei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期81-86,共6页
Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carb... Surface electropositivity and low internal resistance are important factors to improve the anode performance in microbial fuel cells (MFCs). Nitrogen doping is an effective way for the modification of traditional carbon materials. In this work, heat treatment and melamine were used to modify carbon felts to enhance electrogenesis capacity of MFCs. The modified carbon felts were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM) and malvern zeta potentiometer. Results show that the maximum power densities under heat treatment increase from 276.1 to 423.4 mW/m(2) (700 degrees C) and 461.5 mW/m(2) (1200 degrees C) and further increase to 472.5 mW/m(2) (700 degrees C) and 515.4 mW/m(2) (1200 degrees C) with the co-carbonization modification of melamine. The heat treatment reduces the material resistivity, improves the zeta potential which is beneficial to microbial adsorption and electron transfer. The addition of melamine leads to the higher content of surface pyridinic and quaternary nitrogen and higher zeta potential. It is related to higher MFCs performance. Generally, the melamine modification at high temperature increases the feasibility of carbon felt as MFCs's anode materials. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Microbial fuel cells Anode materials carbon felts MODIFICATION MELAMINE
下载PDF
Performance Evaluation of a Molten Carbonate Fuel Cell-Graphene Thermionic Converter-Thermally Regenerative Electrochemical Cycles Hybrid System
16
作者 HU Yaowen HUANG Yuewu 《Journal of Donghua University(English Edition)》 CAS 2021年第4期359-366,共8页
A combined system model is proposed including a molten carbonate fuel cell(MCFC),a graphene thermionic converter(GTIC)and thermally regenerative electrochemical cycles(TRECs).The expressions for power output,energy ef... A combined system model is proposed including a molten carbonate fuel cell(MCFC),a graphene thermionic converter(GTIC)and thermally regenerative electrochemical cycles(TRECs).The expressions for power output,energy efficiency of the subsystems and the couple system are formulated by considering several irreversible losses.Energy conservation equations between the subsystems are achieved leaned on the first law of thermodynamics.The optimum operating ranges for the combined system are determined compared with the MCFC system.Results reveal that the peak power output density(POD)and the corresponding energy efficiency are 28.22%and 10.76%higher than that of the single MCFC system,respectively.The effects of five designing parameters on the power density and energy efficiency of the MCFC/GTIC/TRECs model are also investigated and discussed. 展开更多
关键词 molten carbonate fuel cell(MCFC) graphene thermionic converter(GTIC) thermally regenerative electrochemical cycle(TREC) hybrid system parameter analysis
下载PDF
Lignin derived multi-doped(N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells 被引量:7
17
作者 Yixing Shen Yuhang Li +3 位作者 Guangxing Yang Qiao Zhang Hong Liang Feng Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第5期106-114,共9页
Nowadays,hierarchically macro-/meso-/microporous 3D carbon materials have been paid more attention due to their imaginative application potential in specific electrochemistry.Here,we report a dualtemplate strategy usi... Nowadays,hierarchically macro-/meso-/microporous 3D carbon materials have been paid more attention due to their imaginative application potential in specific electrochemistry.Here,we report a dualtemplate strategy using eutectic NaCl/ZnCl2 melt as airtight and swelling agent to obtain 3D mesoporous skeleton structured carbon from renewable lignin.The prepared lignin-derived biocarbon material(LN-3-1)has a high specific surface area(1289 m^2 g^-1),a large pore volume(2.80 cm^3 g^-1),and a well-connected and stable structure.LN-3-1 exhibits extremely high activity and stability in acidic medium for oxygen reduction reaction(ORR),superior to Pt/C catalyst and most non noble-metal catalysts reported in recent literatures.The prepared carbon material was used as a cathode catalyst to assemble a H2-O2 single fuel cell,and its excellent catalytic performance has been confirmed with the maximum power density of 779 mW cm^-2,which is one of the highest power densities among non-metallic catalysts so far.Density functional theory(DFT)calculations indicate that the synergy of chlorine and nitrogen reconciles the intermediate adsorption energies,leading to an appropriate theoretical ORR onset potential.We develop a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in proton-exchange membrane fuel cells. 展开更多
关键词 ELECTROCATALYST Biocarbon fuel cells Lignin-derived carbon Oxygen reduction reaction CHLORINE doping
下载PDF
In situ grown nanoscale platinum on carbon powder as catalyst layer in proton exchange membrane fuel cells(PEMFCs) 被引量:2
18
作者 Sheng Sui Xiaolong Zhuo +4 位作者 Kaihua Su Xianyong Yao Junliang Zhang Shangfeng Du Kevin Kendall 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期477-483,共7页
An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the ... An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen). 展开更多
关键词 PLATINUM catalyst layer carbon powder layer proton exchange membrane fuel cells
下载PDF
Organic Fuel Synthesis from Atmospheric Carbon Dioxide and Hydrogen Produced from Water by Electrolysis
19
作者 David JOHNSTON 《电工电能新技术》 CSCD 北大核心 2009年第3期6-10,66,共6页
Synthesis of organic fuels from carbon dioxide and hydrogen is analysed,in terms of energy recovery efficiency,and the required energy input for electrolysis of water.This electrical energy is related to the thermal e... Synthesis of organic fuels from carbon dioxide and hydrogen is analysed,in terms of energy recovery efficiency,and the required energy input for electrolysis of water.This electrical energy is related to the thermal energy required in a power station.A method is described to recover heat from energy-producing reactions in the fuel synthesis process,which can then be used to reduce the electrical energy requirement for electrolysis.By co-locating the fuel synthesis plant with a thermal power station,primary(thermal) energy can be used to produce high temperature steam,with a lower electrical requirement for electrolytic production of hydrogen.This can make more efficient use of the primary energy than a thermodynamic engine.Comparison is made with alternative fuels,in terms of energy budget,sustainability,carbon dioxide emissions,etc.The energy security benefits of advanced fuel synthesis are also identified. 展开更多
关键词 燃料 二氧化碳 电解
下载PDF
Simultaneous Denitrification and Carbon Removal in Microbial Fuel Cells 被引量:1
20
作者 Zhenbo SUN Yujin LI +3 位作者 Kejia WEI Jiqiang ZHANG Haiying GUO Jing CAI 《Asian Agricultural Research》 2019年第6期47-49,共3页
In this article,microbial fuel cell( MFC) was used for simultaneous denitrification and carbon removal to ascertain their electricity generation performance. The results showed that strengthening domestication and enr... In this article,microbial fuel cell( MFC) was used for simultaneous denitrification and carbon removal to ascertain their electricity generation performance. The results showed that strengthening domestication and enrichment of electrogenic bacteria had the best start-up effect. An increase in volumetric loading reduced the rate of pollutant removal but promoted the output voltage. The changes of working conditions such as influent concentration,sludge concentration and temperature had a great influence on the electricity generation performance of MFC,and their optimum values were 500 mg/L,2 000 mg/L and 35℃,respectively. 展开更多
关键词 MICROBIAL fuel cell (MFC) DENITRIFICATION carbon removal ELECTRICITY production performance
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部