Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a tra...Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.展开更多
In order to study the effects of different levels of salt stress and nitrogen(N) on physiological mechanisms,carbon isotope discrimination(△13C),and yield of two wheat cultivars(cv.),a two-year field experiment was c...In order to study the effects of different levels of salt stress and nitrogen(N) on physiological mechanisms,carbon isotope discrimination(△13C),and yield of two wheat cultivars(cv.),a two-year field experiment was carried out during 2013-2015.The treatments included three levels of salt stress(1.3,5.2,and 10.5 dS m^-1),three levels of N(50,100,and 150 kg N ha-1),and two wheat cultivars,Bam and Toos.Under salt stress,N application(100 and 150 kg N ha^-1) produced a significant effect on both cultivars with respect to physiological traits,i.e.,net photosynthetic rate(Pn),stomatal conductance(gs),chlorophyll index(Cl),Na^+/K^+ ratio as well as the grain yield(GY).The salt-tolerant and-sensitive cultivars exhibited the maximum values of physio-biochemical and yield attributes at 100 and 150 kg N ha-1,respectively.The results of △13C showed a significant difference(P<0.001) between wheat cultivars under the control and salt stress.According to our result,salt-tolerant cultivar Bam seems to be more efficient in terms of higher GY,Pn,gs,Cl,and lower Na^+/K^+ ratio as well as higher △13C as compared with salt-sensitive cultivar Toos,under salt stress.Therefore,a significant positive correlation that observed between △13C and GY,indicated that △13C may be an effective index for indirect selection of yield potential in wheat under irrigation regimes with saline water.展开更多
Drought tolerant analysis using carbon isotopes discrimination could be useful tool to decide a genotype with high adaptation to drought. A pot culture experiment was conducted in glass house at the IAEA (Internation...Drought tolerant analysis using carbon isotopes discrimination could be useful tool to decide a genotype with high adaptation to drought. A pot culture experiment was conducted in glass house at the IAEA (International Atomic Energy Agency) laboratories, Seibersdorf, Austria to analyze drought tolerant of wheat genotype using carbon isotopes discrimination technique. Four wheat genotypes viz., LU-26s, Bhittai, Roshan, Taifu, were tested. There were two treatments: Control (normal irrigation) and Drought (@ 30% field capacity of the control treatment). Drought treatment was imposed after two weeks of germination. The experiment was continued up to 10 weeks after germination and was terminated at flowering stage. The data were recorded in terms of plant height, number of tillers, shoot dry weight and carbon isotopic ratio (δ). Results showed that genotype LU-26s was found to have best performance under drought condition, with minimum decrease in the growth parameters i.e., plant height, number of tillers and shoot dry weight. High CID (carbon isotopes discrimination) values were also observed in genotype LU-26s, showing close positive correlation between SDW (shoot dry weight) and CID. It is therefore concluded that carbon isotopes discrimination can be an important criterion for the selection of wheat genotypes for drought prone areas.展开更多
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and...Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.展开更多
An experiment was designed to test whether ambient levels of UV-B radiation affect stomatal development, decrease stomatal density, and lead to increased water-use efficiency (WUE). Soybean [Glycine max (L.) Merr.] is...An experiment was designed to test whether ambient levels of UV-B radiation affect stomatal development, decrease stomatal density, and lead to increased water-use efficiency (WUE). Soybean [Glycine max (L.) Merr.] isolines with different stomatal distribution and flavonol expression patterns were field grown under shelters that either transmitted or blocked solar UV-B. All isolines exposed to solar UV-B accumulated higher concentrations of UV-screening phenolic pigments but other responses were isoline dependent. Solar UV-B decreased stomatal density and conductance in isolines expressing a unique branched kaempferol triglycoside. Decreased stomatal density was associated with increased season-long WUE and decreased internal CO2 concentration of leaf (estimated by δ13C discrimination). We concluded that photomorphogenic responses to UV-B affected stomatal density and WUE in field grown soybean;but that the magnitude and direction of these response were associated with isogenic pleiotropic differences in stomatal distribution and pigment expression. UV-B radiation had no effect on biomass accumulation or yield in a cultivar expressing only trace levels of kaempferol suggesting that flavonol expression is not prerequisite to UV-B tolerance.展开更多
The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded ca...The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.We measured the oxygen-isotope composition of the intrusions,their constituent minerals,and samples of the country rock.Magnetite and plagioclase from Panzhihua intrusion haveδ18O values that are consistent with magmatic equilibrium, and formed from magmas withδ18O values that were 1-2‰higher than expected in a mantle-derived magma.The unmetamorphosed country rock has highδ18O values,ranging from 13.2‰(sandstone) to 24.6-28.6‰(dolomite).The skarns and marbles from the aureole have lowerδ18O andδ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole.This would explain the alteration ofδ18O of the dykes which have significantly higher values than expected for a mantle-derived magma.Depending on the exactδ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevatedδ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%,assuming simple mixing.The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock,mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites.These mechanisms,particularly the latter,were probably involved in the formation of the Fe-Ti-V ores.展开更多
The subduction of marine carbonates and carbonated oceanic crust to the Earth’s interior and the return of recycled carbon to the surface via volcanism may play a pivotal role in governing Earth’s atmosphere, climat...The subduction of marine carbonates and carbonated oceanic crust to the Earth’s interior and the return of recycled carbon to the surface via volcanism may play a pivotal role in governing Earth’s atmosphere, climate, and biosphere over geologic time. Identifying recycled marine carbonates and evaluating their fluxes in Earth’s mantle are essential in order to obtain a complete understanding of the global deep carbon cycle (DCC). Here, we review recent advances in tracing the DCC using stable isotopes of divalent metals such as calcium (Ca), magnesium (Mg), and zinc (Zn). The three isotope systematics show great capability as tracers due to appreciable isotope differences between marine carbonate and the terrestrial mantle. Recent studies have observed anomalies of Ca, Mg, and Zn isotopes in basalts worldwide, which have been interpreted as evidence for the recycling of carbonates into the mantle, even into the mantle transition zone (410–660 km). Nevertheless, considerable challenges in determining the DCC remain because other processes can potentially fractionate isotopes in the same direction as expected for carbonate recycling;these processes include partial melting, recycling of carbonated eclogite, separation of metals and carbon, and diffusion. Discriminating between these effects has become a key issue in the study of the DCC and must be considered when interpreting any isotope anomaly of mantle-derived rocks. An ongoing evaluation on the plausibility of potential mechanisms and possible solutions for these challenges is discussed in detail in this work. Based on a comprehensive evaluation, we conclude that the large-scale Mg and Zn isotope anomalies of the Eastern China basalts were produced by recycling of Mg- and Zn-rich carbonates into their mantle source.展开更多
Stable carbon isotope geochemistry provides important information for the recognition of funda- mental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elab- oration of m...Stable carbon isotope geochemistry provides important information for the recognition of funda- mental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elab- oration of models for the global carbon cycle. Carbon isotope ratios in fluid-deposited graphite are powerful tools for unravelling the ultimate origin of carbon (organic matter, mantle, or carbonates) and help to constrain the fluid history and the mechanisms involved in graphite deposition. Graphite precipitation in fluid-deposited occurrences results from C02- and/or CH4-bearing aqueous fluids. Fluid flow can be considered as both a closed (without replenishment of the fluid) or an open system (with renewal of the fluid by successive fluid batches). In closed systems, carbon isotope systematics in graphite is mainly governed by Rayleigh precipi- tation and/or by changes in temperature affecting the fractionation factor between fluid and graphite. Such processes result in zoned graphite crystals or in successive graphite generations showing, in both cases, isotopic variation towards progressive 13C or 12C enrichment (depending upon the dominant carbon phase in the fluid, C02 or CH4, respectively). In open systems, in which carbon is episodically introduced along the fracture systems, the carbon systematics is more complex and individual graphite crystals may display oscillatory zoning because of Rayleigh precipitation or heterogeneous variations of 613C values when mixing of fluids or changes in the composition of the fluids are the mechanisms responsible for graphite precipitation.展开更多
This paper reports a Lower Triassic inorganic carbon isotope profile from the North Pingdingshan Section in Chaohu, Anhui Province, China, which was situated in a deep part of the Lower Yangtze carbonate ramp. The ...This paper reports a Lower Triassic inorganic carbon isotope profile from the North Pingdingshan Section in Chaohu, Anhui Province, China, which was situated in a deep part of the Lower Yangtze carbonate ramp. The δ ( 13 C) excursion shows two periods from the Permian Triassic boundary to the lower Spathian substage, corresponding to the ecosystem undergoing evolution and recovery after the end Permian mass extinction and related events. The first period starts at the δ ( 13 C) depletion caused by the mass extinction and evolves with a gradual δ ( 13 C) increase resulting from the development of some disaster taxa during the Induan. The strong Smithian δ ( 13 C) depletion in the second period might be formed by the collapse of the disaster ecosystem and the biotic recovery occurred with the explosive increase of bioproductivity in the Spathian. Thus the δ ( 13 C) excursion in the Lower Triassic expresses patterns of biotic evolution and recovery during the erratic ecosystem that followed the great end Permian mass extinction.展开更多
238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of c...238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of cathodoluminescence and very low Mn (gener-ally<50 ppm) contents of the samples, it is thought that they contain information on the orig-inal sea water geochemistry. The results of isotopic analyses of these samples are presented interms of δ^(13)C and ^(87)Sr/^(86)Sr ratios versus geological time. The strontium data, consistent withother similar data based on samples from North America, Europe, Africa and other areas inAsia, support the notion of a global consistency in strontium isotope composition of marinecarbonates. The strontium data exhibit three intervals of relatively low ^(87)Sr/^(86)Sr ratios in thelate Middle Devonian to early Late Devonian, Early Carboniferous and Early Permian, corre-sponding to global eustatic high sea level stands. The lowest ^(87)Sr/^(86)Sr ratio recorded in theLate Permian was probably caused by substantial basalt eruptions in the Upper Yangtze Plat-form at the time. Three corresponding periods of relatively high δ^(13)C values at roughly the samethe intervals were caused by a relatively high rate of accumulation of organic carbon duringsea level rises at these times. The deposition of coal was probably responsible for the increaseof sea water δ^(13)C at other times. The δ^(13)C values drop dramatically near theDevonian/Carboniferous, Carboniferous/Permian and Permian/Triassic boundaries, con-sistent with other similar data, which further support the notion that geological time boundariesare associated with mass extinction and subsequent rejuvenation.展开更多
Naturally existing stable carbon and nitrogen isotopes are important in the study of sedimentary organic matter sources. To identify the sources of sedimentary organic matter in Sanggou Bay and its adjacent areas, whi...Naturally existing stable carbon and nitrogen isotopes are important in the study of sedimentary organic matter sources. To identify the sources of sedimentary organic matter in Sanggou Bay and its adjacent areas, which is characterized by high-density shellfish and seaweed aquaculture, the grain size, organic carbon (OC), total nitrogen (TN), carbon and nitrogen isotopic composition (δ13C andδ15N) of organic matter in the surface sediment were determined. The results showed that, in August, sedimentary OC and TN ranged from 0.17% to 0.76% and 0.04% to 0.14%, respectively. In November, OC and TN ranged from 0.23% to 0.87% and 0.05% to 0.14%, respectively. There was a significant positive correlation between OC and TN (R=0.98, P&lt;0.0001), indicating that OC and TN were homologous. In August, theδ13C andδ15N of organic matter varied from -23.06‰ to -21.59‰ and 5.10‰ to 6.31‰, respectively. In November,δ13C andδ15N ranged from -22.87‰ to -21.34‰ and 5.13‰ to 7.31‰, respectively. This study found that the major sources of sedimentary organic matter were marine shellfish biodeposition, seaweed farming, and soil organic matter. Using a three-end-member mixed model, we estimated that the dominant source of sedimentary organic matter was shellfish biodeposition, with an average contribution rate of 65.53% in August and 43.00% in November. Thus, shellfish farming had a significant influence on the coastal carbon cycle.展开更多
Based on a study of Neoproterozoic carbonates in the Jilin-Liaoning-Xuzhou-Huaiyang area, especially its cyclic sequence stratigraphy and Sr isotopes, two maximum sea flooding events (at 820 Ma and 835 Ma) have been i...Based on a study of Neoproterozoic carbonates in the Jilin-Liaoning-Xuzhou-Huaiyang area, especially its cyclic sequence stratigraphy and Sr isotopes, two maximum sea flooding events (at 820 Ma and 835 Ma) have been identified. The resulting isochronous stratigraphic correlation proves that these Precambrian strata were connected between the Qingbaikou and the Nanhuan systems with a time range from 750 Ma to 850 Ma. The disappearance of microsparite carbonate and coming of a glacial stage offer important evidence for worldwide stratigraphic correlation and open a window for further correlation of the stratigraphic successions across the Sino-Korean and Yangtze Plates. A new correlation scheme is therefore provided based on our work.展开更多
Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived ...Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He. Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic areathan do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4‰ to 1.6 ‰ and from -52.8‰ to -2.8‰, respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and near-surface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantle-derived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material. However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1 %-2%) to the MORB reservoir around 1.3 Ga ago, which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.展开更多
The lower Cambrian Niutitang Formation, a widespread black shale deposition, is of geological interest because of its polymetallic beds, Cambrian explosion, depositional ages, dramatic environmental changes and so on....The lower Cambrian Niutitang Formation, a widespread black shale deposition, is of geological interest because of its polymetallic beds, Cambrian explosion, depositional ages, dramatic environmental changes and so on. Previous study focused mainly on inorganic geochemistry and few studies have investigated the organic fractions of upper Neoproterozoic-lower Cambrian strata in South China. Here we report a study of biomarkers plus organic carbon isotopes for black shales from Ganziping, Hunan Province (China). All the saturated hydrocarbon fractions have a unimodal distribution of n-alkanes, a high content of short-chain alkanes and maximize at C 19 or C 20 (C 23 for sample Gzh00-1). The C 27 /C 29 sterane ratio ranges from 0.77 to 1.20 and 4-methylsteranes are in low abundance. These parameters indicate that algae and bacteria are the important primary producers. Furthermore, biomarker maturity proxies show the samples to be higher maturity. The low Pr/Ph values (0.7) suggest that the samples were deposited under anoxic conditions and, likely, under stratified water columns. In addition, 25-norhopanes and gammacerane are present as diagnostic indicators of normal marine salinity and dysoxic to anoxic conditions. During the Early Tommotian, known to coincide with a transgression event, small shelly fossils increased in abundance and diversity. Moreover, positive δ 13 C org excursions close to 1.4‰ occur at the base of the Tommotian stage. In summary, the Early Cambrian black shales were deposited under dramatic paleoenvironmental changes, including oceanic anoxia, higher primary productivity and sea-level rise.展开更多
On the basis of hydrochemical observation and experimental calculation, the features of stable carbon isotope geochemistry in the karst dynamic systems of the Guilin Karst Experimental Site, Huanglong Ravine and Wujia...On the basis of hydrochemical observation and experimental calculation, the features of stable carbon isotope geochemistry in the karst dynamic systems of the Guilin Karst Experimental Site, Huanglong Ravine and Wujiangdu Dam Site are summarized in this study. Furthermore, an attempt has been made to solve several geochemical problems, such as the origin of CO2 in the system, kinetic fractionation of carbon isotopes during calcite deposition, hydrochemistry and formation of tufa, and carbon-14 dating of tufa of hydrothermal origin. The results show that three kinds of karst dynamic system can be distinguished: (1) the shallow system, such as the Guilin Karst Experimental Site, in which soil CO2 provides the an active agent for karst processes; (2) the geothermal system, such as the Huanglong Ravine, in which metamorphic or/ and juvenile CO, is the source of activity for karst; (3) the anthropogenic system, such as the Wujiangdu Dam Site, in which the stable carbon isotope geochemical and hydrochemical features have been greatly affected by human activity.展开更多
Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution chara...Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution characteristics of stable isotope, then reviewed the recent advances and applications of stable isotope in the C and N biogeochemical cycles of ecosystem. By applying the 13 C natural abundance technique, ecologists are able to understand the photosynthetic path and CO 2 fixation of plants, the CO 2 exchange and C balance status of ecosystem, the composition, distribution and turnover of soil organic C and the sources of organic matter in food webs, while by using the 13 C labeled technique, the effects of elevated CO 2 on the C processes of ecosystem and the sources and fate of organic matter in ecosystem can be revealed in detail. Differently, by applying the 15 N natural abundance technique, ecologists are able to analyze the biological N 2 -fixation, the N sources of ecosystem, the N transformation processes of ecosystem and the N trophic status in food webs, while by using the 15 N labeled technique, the sources, transformation and fate of N in ecosystem and the effects of N input on the ecosystem can be investigated in depth. The applications of both C and N isotope natural abundance and labeled techniques, combined with the elemental, other isotope ( 34 S) and molecular biomarker information, will be more propitious to the investigation of C and N cycle mechanisms. Finally, this paper concluded the problems existed in current researches, and put forward the perspective of stable isotope techniques in the studies on C and N biogeochemical cycles of ecosystem in the future.展开更多
Stable carbon isotope ratio (δ13Ccarb) analysis has been widely applied to the study of the inter-conti- nental or global marine carbonate correlation. Large-scale Cambrian-Ordovician carbonate platforms were devel...Stable carbon isotope ratio (δ13Ccarb) analysis has been widely applied to the study of the inter-conti- nental or global marine carbonate correlation. Large-scale Cambrian-Ordovician carbonate platforms were developed in the Tarim Basin. But research on fluctuation character- istics and global correlation of δ13Ccarb is still weak. Based on conodont biostratigraphy and whole-rock δ13Ccarb data in the Tahe oil-gas field of the northern Tarim Basin, the global correlation and genesis of positive carbon isotope excursions in the Darriwilian--Early Katian was exam- ined. Three positive excursions were identified in the Tahe oil-gas field including the middle Darriwilian carbon iso- tope excursion (MDICE), the Guttenberg carbon isotope excursion (GICE), and a positive excursion within the Pygodus anserinus conodont zone which is named the Early Sandbian carbon isotope excursion (ESICE) in this paper. Furthermore, these positive excursions had no direct relation with sea level fluctuations. MDICE and GICE could be globally correlated. The Middle-Upper Ordovi- cian Saergan Formation source rocks of the Kalpin outcrops were in accordance with the geological time of MDICE and ESICE. GICE had close relationship with the source rock of the Lianglitag Formation in the basin.Massive organic carbon burial was an important factor controlling the genesis of these positive excursions.展开更多
Crop carbon and water relations research is important in the studies of water saving agriculture, breeding program, and energy and material cycles in soil plant atmosphere continuum (SPAC). The purpose of this paper...Crop carbon and water relations research is important in the studies of water saving agriculture, breeding program, and energy and material cycles in soil plant atmosphere continuum (SPAC). The purpose of this paper is to review the current state of knowledge on stable isotopes of carbon, oxygen, and hydrogen in the research of crop carbon and water relations, such as carbon isotope discrimination (△^13C) during carbon fixation process by photosynthesis, application of △^13C in crop water use efficiency (WUE) and breeding programs, oxygen isotope enrichment during leaf water transpiration, CO2 fixation by photosynthesis and release by respiration, application of hydrogen isotope composition (619) and oxygen isotope composition (6180) for determination of water source used by a crop, stable isotope coupling Keeling plot for investigating the carbon and water flux in ecosystem, energy and material cycle in SPAC and correlative integrative models on stable isotope. These aspects contain most of the stable isotope researches on crop carbon and water relations which have been widely explored internationally while less referred in China. Based on the reviewed literatures, some needs for future research are suggested.展开更多
Surface sediments from the Chukchi Sea and adjacent arctic deep sea were investigated for organic carbon and nitrogen isotopes (in δ13Corg and δ15Norg) as well as biogeni'c silica (BSiO2). δ13Corg and δ15Norg...Surface sediments from the Chukchi Sea and adjacent arctic deep sea were investigated for organic carbon and nitrogen isotopes (in δ13Corg and δ15Norg) as well as biogeni'c silica (BSiO2). δ13Corg and δ15Norg values of surface sediments in the study area fall between the end-member values of marine and terrestrial organic matter from the surrounding lands and seas, their variations reflect the changes of marine productivity and terrestrial supply in the study area. BSiO2 shows a similar distribution pattern with δ13Corg and δ15Norg, and can be used as an indicator of marine productivity. In the central-west Chukchi Sea and the Chukchi Rise, sediments have higher δ13Corg, δ15Norg and BSiO2 values, indicating the region has high marine productivity influenced by the nutrient-rich branches of the Pacific waters. In the coastal zone off northwestern Alaska, δ13Corg and δ15Norg values become lighter, indicating a weakening marine productivity and an increasing terrigenous supply due to the effects of the least nutrient-rich branch of the Pacific waters. In the north and the northeast of the study area (including the Chukchi Plateau, the Canada Basin and the Beaufort shelf), δ13Corg, δ15Norg and BSiO2 have the lowest values, and the terrigenous organic matter becomes dominant in surface sediments because this region has the longest ice-covered duration, the least nutrient-rich seawater and the increasing supply of terrestrial materials from the Mackenzie River and the northern Alaska under the action of the clockwise Beaufort gyre. Because the subarctic Pacific waters are continuously discharged into the central basin of the Arctic Ocean through the study area, the nutrient pool in the Chukchi Sea can be considered as a typical open system, the ratio of δ15Norg to BSiO2 content show some tracers that the level of nutrient utilization is contrary to nutrient supply and marine productivity formed in seawater.展开更多
Monitoring and sampling of main plants, soil CO2, soil water, bedrock, spring water, drip water and its corresponding speleothem were performed at four cave systems of Guizhou, Southwest China, from April 2003 to May ...Monitoring and sampling of main plants, soil CO2, soil water, bedrock, spring water, drip water and its corresponding speleothem were performed at four cave systems of Guizhou, Southwest China, from April 2003 to May 2004, in order to understand stable carbon isotope ratios variations of dissolved inorganic Carbon (DIC) in cave percolation waters (δ13CDIC) and their implications for paleoclimate. Stable carbon isotopic compositions and ions (Ca, Mg, Sr, SO4, CI etc.) were measured for all samples. The results indicate that there are significant differences among the δ13CDIC values from inter-cave, even inter-drip of intra-cave in the four caves. The δ13CDIC values from the Liangfeng Cave (LFC) is lightest among the four caves, where vegetation type overlying the cave is primary forest dominated by tall trees with lighter average δ13C value (-29.9‰). And there are remarkable differences in δ13CDIC values of different drip waters in the Qixing Cave (QXC) and Jiangjun Cave (JJC), up to 6.9‰ and 7.8‰, respectively. Further analyses show that the δ13CDIC values in cave drip waters are not only controlled by vegetation biomass overlying the cave, but also hydro-geochemical processes. Therefore, accurate interpreting of δ13C recorded in speleothems cannot be guaranteed if these effects of the above mentioned factors are not taken into consideration.展开更多
文摘Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.
基金funded by the International Atomic Energy Agency of Iran through a research project (Production of salt-tolerant mutant lines using morpho-physiological mechanisms and stable 15N and 13C isotope (A87A057)) of plant breeding group, Agriculture Researh School, Nuclear Science and Technology Research Institute (NSTRI) of Iran, Karaj
文摘In order to study the effects of different levels of salt stress and nitrogen(N) on physiological mechanisms,carbon isotope discrimination(△13C),and yield of two wheat cultivars(cv.),a two-year field experiment was carried out during 2013-2015.The treatments included three levels of salt stress(1.3,5.2,and 10.5 dS m^-1),three levels of N(50,100,and 150 kg N ha-1),and two wheat cultivars,Bam and Toos.Under salt stress,N application(100 and 150 kg N ha^-1) produced a significant effect on both cultivars with respect to physiological traits,i.e.,net photosynthetic rate(Pn),stomatal conductance(gs),chlorophyll index(Cl),Na^+/K^+ ratio as well as the grain yield(GY).The salt-tolerant and-sensitive cultivars exhibited the maximum values of physio-biochemical and yield attributes at 100 and 150 kg N ha-1,respectively.The results of △13C showed a significant difference(P<0.001) between wheat cultivars under the control and salt stress.According to our result,salt-tolerant cultivar Bam seems to be more efficient in terms of higher GY,Pn,gs,Cl,and lower Na^+/K^+ ratio as well as higher △13C as compared with salt-sensitive cultivar Toos,under salt stress.Therefore,a significant positive correlation that observed between △13C and GY,indicated that △13C may be an effective index for indirect selection of yield potential in wheat under irrigation regimes with saline water.
文摘Drought tolerant analysis using carbon isotopes discrimination could be useful tool to decide a genotype with high adaptation to drought. A pot culture experiment was conducted in glass house at the IAEA (International Atomic Energy Agency) laboratories, Seibersdorf, Austria to analyze drought tolerant of wheat genotype using carbon isotopes discrimination technique. Four wheat genotypes viz., LU-26s, Bhittai, Roshan, Taifu, were tested. There were two treatments: Control (normal irrigation) and Drought (@ 30% field capacity of the control treatment). Drought treatment was imposed after two weeks of germination. The experiment was continued up to 10 weeks after germination and was terminated at flowering stage. The data were recorded in terms of plant height, number of tillers, shoot dry weight and carbon isotopic ratio (δ). Results showed that genotype LU-26s was found to have best performance under drought condition, with minimum decrease in the growth parameters i.e., plant height, number of tillers and shoot dry weight. High CID (carbon isotopes discrimination) values were also observed in genotype LU-26s, showing close positive correlation between SDW (shoot dry weight) and CID. It is therefore concluded that carbon isotopes discrimination can be an important criterion for the selection of wheat genotypes for drought prone areas.
基金supported by the National Key Research and Development Program of China(2016YFD0600201)the National Nonprofit Institute Research Grant of CAF(CAFYBB2017ZB003)+1 种基金the National Natural Science Foundation of China(3187071631670720)。
文摘Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.
文摘An experiment was designed to test whether ambient levels of UV-B radiation affect stomatal development, decrease stomatal density, and lead to increased water-use efficiency (WUE). Soybean [Glycine max (L.) Merr.] isolines with different stomatal distribution and flavonol expression patterns were field grown under shelters that either transmitted or blocked solar UV-B. All isolines exposed to solar UV-B accumulated higher concentrations of UV-screening phenolic pigments but other responses were isoline dependent. Solar UV-B decreased stomatal density and conductance in isolines expressing a unique branched kaempferol triglycoside. Decreased stomatal density was associated with increased season-long WUE and decreased internal CO2 concentration of leaf (estimated by δ13C discrimination). We concluded that photomorphogenic responses to UV-B affected stomatal density and WUE in field grown soybean;but that the magnitude and direction of these response were associated with isogenic pleiotropic differences in stomatal distribution and pigment expression. UV-B radiation had no effect on biomass accumulation or yield in a cultivar expressing only trace levels of kaempferol suggesting that flavonol expression is not prerequisite to UV-B tolerance.
基金The project benefited from a PROCORE Hong Kong-France exchange grant to Arndt and Zhou and a grant from the US National Science Foundation
文摘The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.We measured the oxygen-isotope composition of the intrusions,their constituent minerals,and samples of the country rock.Magnetite and plagioclase from Panzhihua intrusion haveδ18O values that are consistent with magmatic equilibrium, and formed from magmas withδ18O values that were 1-2‰higher than expected in a mantle-derived magma.The unmetamorphosed country rock has highδ18O values,ranging from 13.2‰(sandstone) to 24.6-28.6‰(dolomite).The skarns and marbles from the aureole have lowerδ18O andδ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole.This would explain the alteration ofδ18O of the dykes which have significantly higher values than expected for a mantle-derived magma.Depending on the exactδ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevatedδ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%,assuming simple mixing.The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock,mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites.These mechanisms,particularly the latter,were probably involved in the formation of the Fe-Ti-V ores.
基金the National Nature Science Foundation of China (41730214 and 41622303)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB18030603).
文摘The subduction of marine carbonates and carbonated oceanic crust to the Earth’s interior and the return of recycled carbon to the surface via volcanism may play a pivotal role in governing Earth’s atmosphere, climate, and biosphere over geologic time. Identifying recycled marine carbonates and evaluating their fluxes in Earth’s mantle are essential in order to obtain a complete understanding of the global deep carbon cycle (DCC). Here, we review recent advances in tracing the DCC using stable isotopes of divalent metals such as calcium (Ca), magnesium (Mg), and zinc (Zn). The three isotope systematics show great capability as tracers due to appreciable isotope differences between marine carbonate and the terrestrial mantle. Recent studies have observed anomalies of Ca, Mg, and Zn isotopes in basalts worldwide, which have been interpreted as evidence for the recycling of carbonates into the mantle, even into the mantle transition zone (410–660 km). Nevertheless, considerable challenges in determining the DCC remain because other processes can potentially fractionate isotopes in the same direction as expected for carbonate recycling;these processes include partial melting, recycling of carbonated eclogite, separation of metals and carbon, and diffusion. Discriminating between these effects has become a key issue in the study of the DCC and must be considered when interpreting any isotope anomaly of mantle-derived rocks. An ongoing evaluation on the plausibility of potential mechanisms and possible solutions for these challenges is discussed in detail in this work. Based on a comprehensive evaluation, we conclude that the large-scale Mg and Zn isotope anomalies of the Eastern China basalts were produced by recycling of Mg- and Zn-rich carbonates into their mantle source.
基金contribution from project CGL2010-16008 (Spanish Ministry for Science and Innovation)
文摘Stable carbon isotope geochemistry provides important information for the recognition of funda- mental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elab- oration of models for the global carbon cycle. Carbon isotope ratios in fluid-deposited graphite are powerful tools for unravelling the ultimate origin of carbon (organic matter, mantle, or carbonates) and help to constrain the fluid history and the mechanisms involved in graphite deposition. Graphite precipitation in fluid-deposited occurrences results from C02- and/or CH4-bearing aqueous fluids. Fluid flow can be considered as both a closed (without replenishment of the fluid) or an open system (with renewal of the fluid by successive fluid batches). In closed systems, carbon isotope systematics in graphite is mainly governed by Rayleigh precipi- tation and/or by changes in temperature affecting the fractionation factor between fluid and graphite. Such processes result in zoned graphite crystals or in successive graphite generations showing, in both cases, isotopic variation towards progressive 13C or 12C enrichment (depending upon the dominant carbon phase in the fluid, C02 or CH4, respectively). In open systems, in which carbon is episodically introduced along the fracture systems, the carbon systematics is more complex and individual graphite crystals may display oscillatory zoning because of Rayleigh precipitation or heterogeneous variations of 613C values when mixing of fluids or changes in the composition of the fluids are the mechanisms responsible for graphite precipitation.
基金ThisresearchissupportedbytheChinese" 973Program" (No .G2 0 0 0 0 7770 5 ) theNationalNaturalScienceFoundationofChina (No .40 0 72 0 11) theChinaNationalCommissiononStratigraphyandtheYichangCenterofStratigraphyandPaleontology .
文摘This paper reports a Lower Triassic inorganic carbon isotope profile from the North Pingdingshan Section in Chaohu, Anhui Province, China, which was situated in a deep part of the Lower Yangtze carbonate ramp. The δ ( 13 C) excursion shows two periods from the Permian Triassic boundary to the lower Spathian substage, corresponding to the ecosystem undergoing evolution and recovery after the end Permian mass extinction and related events. The first period starts at the δ ( 13 C) depletion caused by the mass extinction and evolves with a gradual δ ( 13 C) increase resulting from the development of some disaster taxa during the Induan. The strong Smithian δ ( 13 C) depletion in the second period might be formed by the collapse of the disaster ecosystem and the biotic recovery occurred with the explosive increase of bioproductivity in the Spathian. Thus the δ ( 13 C) excursion in the Lower Triassic expresses patterns of biotic evolution and recovery during the erratic ecosystem that followed the great end Permian mass extinction.
基金This study was supported by the National Natural Science Foundation of China Grant No.48970116
文摘238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of cathodoluminescence and very low Mn (gener-ally<50 ppm) contents of the samples, it is thought that they contain information on the orig-inal sea water geochemistry. The results of isotopic analyses of these samples are presented interms of δ^(13)C and ^(87)Sr/^(86)Sr ratios versus geological time. The strontium data, consistent withother similar data based on samples from North America, Europe, Africa and other areas inAsia, support the notion of a global consistency in strontium isotope composition of marinecarbonates. The strontium data exhibit three intervals of relatively low ^(87)Sr/^(86)Sr ratios in thelate Middle Devonian to early Late Devonian, Early Carboniferous and Early Permian, corre-sponding to global eustatic high sea level stands. The lowest ^(87)Sr/^(86)Sr ratio recorded in theLate Permian was probably caused by substantial basalt eruptions in the Upper Yangtze Plat-form at the time. Three corresponding periods of relatively high δ^(13)C values at roughly the samethe intervals were caused by a relatively high rate of accumulation of organic carbon duringsea level rises at these times. The deposition of coal was probably responsible for the increaseof sea water δ^(13)C at other times. The δ^(13)C values drop dramatically near theDevonian/Carboniferous, Carboniferous/Permian and Permian/Triassic boundaries, con-sistent with other similar data, which further support the notion that geological time boundariesare associated with mass extinction and subsequent rejuvenation.
基金The Joint Fund Project of National Fund Committee and Shandong Province under contract No.U1406403the State Oceanic Administration Project of China under contract Nos DOMEP(MEA)-01-01 and DOMEP(MEA)-02
文摘Naturally existing stable carbon and nitrogen isotopes are important in the study of sedimentary organic matter sources. To identify the sources of sedimentary organic matter in Sanggou Bay and its adjacent areas, which is characterized by high-density shellfish and seaweed aquaculture, the grain size, organic carbon (OC), total nitrogen (TN), carbon and nitrogen isotopic composition (δ13C andδ15N) of organic matter in the surface sediment were determined. The results showed that, in August, sedimentary OC and TN ranged from 0.17% to 0.76% and 0.04% to 0.14%, respectively. In November, OC and TN ranged from 0.23% to 0.87% and 0.05% to 0.14%, respectively. There was a significant positive correlation between OC and TN (R=0.98, P&lt;0.0001), indicating that OC and TN were homologous. In August, theδ13C andδ15N of organic matter varied from -23.06‰ to -21.59‰ and 5.10‰ to 6.31‰, respectively. In November,δ13C andδ15N ranged from -22.87‰ to -21.34‰ and 5.13‰ to 7.31‰, respectively. This study found that the major sources of sedimentary organic matter were marine shellfish biodeposition, seaweed farming, and soil organic matter. Using a three-end-member mixed model, we estimated that the dominant source of sedimentary organic matter was shellfish biodeposition, with an average contribution rate of 65.53% in August and 43.00% in November. Thus, shellfish farming had a significant influence on the coastal carbon cycle.
文摘Based on a study of Neoproterozoic carbonates in the Jilin-Liaoning-Xuzhou-Huaiyang area, especially its cyclic sequence stratigraphy and Sr isotopes, two maximum sea flooding events (at 820 Ma and 835 Ma) have been identified. The resulting isochronous stratigraphic correlation proves that these Precambrian strata were connected between the Qingbaikou and the Nanhuan systems with a time range from 750 Ma to 850 Ma. The disappearance of microsparite carbonate and coming of a glacial stage offer important evidence for worldwide stratigraphic correlation and open a window for further correlation of the stratigraphic successions across the Sino-Korean and Yangtze Plates. A new correlation scheme is therefore provided based on our work.
文摘Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He. Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic areathan do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4‰ to 1.6 ‰ and from -52.8‰ to -2.8‰, respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and near-surface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantle-derived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material. However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1 %-2%) to the MORB reservoir around 1.3 Ga ago, which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.
基金supported by the "CAS Hundred Talents"Foundation of the Chinese Academy of Sciences to H.Z.,National Natural Science Foundation of China (Grant No.41102066, 40972084)Natural Science Foundation Project of CQ CSTC (Grant No. 2009BB7383)Opening Foundation of the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences
文摘The lower Cambrian Niutitang Formation, a widespread black shale deposition, is of geological interest because of its polymetallic beds, Cambrian explosion, depositional ages, dramatic environmental changes and so on. Previous study focused mainly on inorganic geochemistry and few studies have investigated the organic fractions of upper Neoproterozoic-lower Cambrian strata in South China. Here we report a study of biomarkers plus organic carbon isotopes for black shales from Ganziping, Hunan Province (China). All the saturated hydrocarbon fractions have a unimodal distribution of n-alkanes, a high content of short-chain alkanes and maximize at C 19 or C 20 (C 23 for sample Gzh00-1). The C 27 /C 29 sterane ratio ranges from 0.77 to 1.20 and 4-methylsteranes are in low abundance. These parameters indicate that algae and bacteria are the important primary producers. Furthermore, biomarker maturity proxies show the samples to be higher maturity. The low Pr/Ph values (0.7) suggest that the samples were deposited under anoxic conditions and, likely, under stratified water columns. In addition, 25-norhopanes and gammacerane are present as diagnostic indicators of normal marine salinity and dysoxic to anoxic conditions. During the Early Tommotian, known to coincide with a transgression event, small shelly fossils increased in abundance and diversity. Moreover, positive δ 13 C org excursions close to 1.4‰ occur at the base of the Tommotian stage. In summary, the Early Cambrian black shales were deposited under dramatic paleoenvironmental changes, including oceanic anoxia, higher primary productivity and sea-level rise.
基金This research was supproted by IGCP Project 379, National Natural Science Foundation of China (No. 49632100) and the Ministry of Geology and Mineral Resources of China (No. 9501104, Karst Dynamics Laboratory)
文摘On the basis of hydrochemical observation and experimental calculation, the features of stable carbon isotope geochemistry in the karst dynamic systems of the Guilin Karst Experimental Site, Huanglong Ravine and Wujiangdu Dam Site are summarized in this study. Furthermore, an attempt has been made to solve several geochemical problems, such as the origin of CO2 in the system, kinetic fractionation of carbon isotopes during calcite deposition, hydrochemistry and formation of tufa, and carbon-14 dating of tufa of hydrothermal origin. The results show that three kinds of karst dynamic system can be distinguished: (1) the shallow system, such as the Guilin Karst Experimental Site, in which soil CO2 provides the an active agent for karst processes; (2) the geothermal system, such as the Huanglong Ravine, in which metamorphic or/ and juvenile CO, is the source of activity for karst; (3) the anthropogenic system, such as the Wujiangdu Dam Site, in which the stable carbon isotope geochemical and hydrochemical features have been greatly affected by human activity.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-223)National Natural Science Foundation of China (No. 40803023)+1 种基金Key Program of Natural Science Foundation of Shandong Province(No. ZR2010DZ001)Talents Foundation of Chinese Academy of Sciences (No. AJ0809BX-036)
文摘Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution characteristics of stable isotope, then reviewed the recent advances and applications of stable isotope in the C and N biogeochemical cycles of ecosystem. By applying the 13 C natural abundance technique, ecologists are able to understand the photosynthetic path and CO 2 fixation of plants, the CO 2 exchange and C balance status of ecosystem, the composition, distribution and turnover of soil organic C and the sources of organic matter in food webs, while by using the 13 C labeled technique, the effects of elevated CO 2 on the C processes of ecosystem and the sources and fate of organic matter in ecosystem can be revealed in detail. Differently, by applying the 15 N natural abundance technique, ecologists are able to analyze the biological N 2 -fixation, the N sources of ecosystem, the N transformation processes of ecosystem and the N trophic status in food webs, while by using the 15 N labeled technique, the sources, transformation and fate of N in ecosystem and the effects of N input on the ecosystem can be investigated in depth. The applications of both C and N isotope natural abundance and labeled techniques, combined with the elemental, other isotope ( 34 S) and molecular biomarker information, will be more propitious to the investigation of C and N cycle mechanisms. Finally, this paper concluded the problems existed in current researches, and put forward the perspective of stable isotope techniques in the studies on C and N biogeochemical cycles of ecosystem in the future.
基金supported by the National Key Scientific Project of China(No.2011ZX05005-0042016ZX05005-002)the National Basic Research Program of China(973 Program)(No.2012CB214806)
文摘Stable carbon isotope ratio (δ13Ccarb) analysis has been widely applied to the study of the inter-conti- nental or global marine carbonate correlation. Large-scale Cambrian-Ordovician carbonate platforms were developed in the Tarim Basin. But research on fluctuation character- istics and global correlation of δ13Ccarb is still weak. Based on conodont biostratigraphy and whole-rock δ13Ccarb data in the Tahe oil-gas field of the northern Tarim Basin, the global correlation and genesis of positive carbon isotope excursions in the Darriwilian--Early Katian was exam- ined. Three positive excursions were identified in the Tahe oil-gas field including the middle Darriwilian carbon iso- tope excursion (MDICE), the Guttenberg carbon isotope excursion (GICE), and a positive excursion within the Pygodus anserinus conodont zone which is named the Early Sandbian carbon isotope excursion (ESICE) in this paper. Furthermore, these positive excursions had no direct relation with sea level fluctuations. MDICE and GICE could be globally correlated. The Middle-Upper Ordovi- cian Saergan Formation source rocks of the Kalpin outcrops were in accordance with the geological time of MDICE and ESICE. GICE had close relationship with the source rock of the Lianglitag Formation in the basin.Massive organic carbon burial was an important factor controlling the genesis of these positive excursions.
基金supported by the National Basic Re-search Program of China (973 Program) (2005CB121103)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-406KSCX1-YW-09-05)
文摘Crop carbon and water relations research is important in the studies of water saving agriculture, breeding program, and energy and material cycles in soil plant atmosphere continuum (SPAC). The purpose of this paper is to review the current state of knowledge on stable isotopes of carbon, oxygen, and hydrogen in the research of crop carbon and water relations, such as carbon isotope discrimination (△^13C) during carbon fixation process by photosynthesis, application of △^13C in crop water use efficiency (WUE) and breeding programs, oxygen isotope enrichment during leaf water transpiration, CO2 fixation by photosynthesis and release by respiration, application of hydrogen isotope composition (619) and oxygen isotope composition (6180) for determination of water source used by a crop, stable isotope coupling Keeling plot for investigating the carbon and water flux in ecosystem, energy and material cycle in SPAC and correlative integrative models on stable isotope. These aspects contain most of the stable isotope researches on crop carbon and water relations which have been widely explored internationally while less referred in China. Based on the reviewed literatures, some needs for future research are suggested.
基金the National Natural Science Foundation of China under contract Nos 40506004 and 40431002.
文摘Surface sediments from the Chukchi Sea and adjacent arctic deep sea were investigated for organic carbon and nitrogen isotopes (in δ13Corg and δ15Norg) as well as biogeni'c silica (BSiO2). δ13Corg and δ15Norg values of surface sediments in the study area fall between the end-member values of marine and terrestrial organic matter from the surrounding lands and seas, their variations reflect the changes of marine productivity and terrestrial supply in the study area. BSiO2 shows a similar distribution pattern with δ13Corg and δ15Norg, and can be used as an indicator of marine productivity. In the central-west Chukchi Sea and the Chukchi Rise, sediments have higher δ13Corg, δ15Norg and BSiO2 values, indicating the region has high marine productivity influenced by the nutrient-rich branches of the Pacific waters. In the coastal zone off northwestern Alaska, δ13Corg and δ15Norg values become lighter, indicating a weakening marine productivity and an increasing terrigenous supply due to the effects of the least nutrient-rich branch of the Pacific waters. In the north and the northeast of the study area (including the Chukchi Plateau, the Canada Basin and the Beaufort shelf), δ13Corg, δ15Norg and BSiO2 have the lowest values, and the terrigenous organic matter becomes dominant in surface sediments because this region has the longest ice-covered duration, the least nutrient-rich seawater and the increasing supply of terrestrial materials from the Mackenzie River and the northern Alaska under the action of the clockwise Beaufort gyre. Because the subarctic Pacific waters are continuously discharged into the central basin of the Arctic Ocean through the study area, the nutrient pool in the Chukchi Sea can be considered as a typical open system, the ratio of δ15Norg to BSiO2 content show some tracers that the level of nutrient utilization is contrary to nutrient supply and marine productivity formed in seawater.
基金funded by National Key Basic Research Development Program (Grant No. 2013CB956700)Orientation Project of Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. kzcx2-yw-306)National Natural Science Foundation of China (Grant Nos. 41003054 and 90202003)
文摘Monitoring and sampling of main plants, soil CO2, soil water, bedrock, spring water, drip water and its corresponding speleothem were performed at four cave systems of Guizhou, Southwest China, from April 2003 to May 2004, in order to understand stable carbon isotope ratios variations of dissolved inorganic Carbon (DIC) in cave percolation waters (δ13CDIC) and their implications for paleoclimate. Stable carbon isotopic compositions and ions (Ca, Mg, Sr, SO4, CI etc.) were measured for all samples. The results indicate that there are significant differences among the δ13CDIC values from inter-cave, even inter-drip of intra-cave in the four caves. The δ13CDIC values from the Liangfeng Cave (LFC) is lightest among the four caves, where vegetation type overlying the cave is primary forest dominated by tall trees with lighter average δ13C value (-29.9‰). And there are remarkable differences in δ13CDIC values of different drip waters in the Qixing Cave (QXC) and Jiangjun Cave (JJC), up to 6.9‰ and 7.8‰, respectively. Further analyses show that the δ13CDIC values in cave drip waters are not only controlled by vegetation biomass overlying the cave, but also hydro-geochemical processes. Therefore, accurate interpreting of δ13C recorded in speleothems cannot be guaranteed if these effects of the above mentioned factors are not taken into consideration.