Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output t...Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.展开更多
Significantly high abundant methyl-Methyl Trimethyl Tridecyl Chromans (MTTCs) have been detected in aromatic hydrocarbon fractions in crude oils from the Jizhong Depression and Jianghan Basin. The distribution of th...Significantly high abundant methyl-Methyl Trimethyl Tridecyl Chromans (MTTCs) have been detected in aromatic hydrocarbon fractions in crude oils from the Jizhong Depression and Jianghan Basin. The distribution of these compounds is dominated by methyl-MTTC and dimethyl- MTTC series, which indicate diagenetic products of a hypersaline depositional environment in the early stage and show a low degree of methylation. The occurrence of significantly high abundant methyl-MTTC depends mainly on good preservation conditions with a strongly reductive, hypersaline and water-columned depositional environment and subsequent non-intensive diagenetic transformations. The stable carbon isotopic compositions of the methyl-MTTCs and dimethyl-MTTCs in two samples are far different from the stable carbon isotopic composition of C30 hopane of apparent bacteria biogenesis (up to 4.11‰ and 5.75‰, respectively). This obviously demonstrates that the methyl-MTTC and dimethyl-MTTCs cannot be of bacteria origin, which is different from the previous point of view about non-photosynthetic bacteria products or possible bacteria-reworked products. On the contrary, the stable carbon isotopic compositions of methyl-MTTC and dimethyl-MTTCs in the two samples were similar to that of the same carbon-numbered n-alkanes (nC27-nC28-nC29), which indicates that they share the same source origin. Especially in the crude oil from the Zhao61 well, stable carbon isotopic compositions are also similar to that of the same carbon-numbered steranes with ααα- 20R isomer (mostly less than 0.4‰). In consideration of the results of previous studies on saline lake ecological sedimentation, the authors hold that the methyl-MTTC and dimethyl-MTTCs in the saline lake sediments should be of algal biogenesis origin.展开更多
Metazoan fossils in the Gaojiashan Biota are famous for being well preserved and may provide new insights into the early evolution and skeletonization of Metazoans. We are studying the isotopic compositions of organic...Metazoan fossils in the Gaojiashan Biota are famous for being well preserved and may provide new insights into the early evolution and skeletonization of Metazoans. We are studying the isotopic compositions of organic and carbonate carbon from a sequence of sedimentary rocks at the Gaojiashan section, northern Yangtze Platform, Shaanxi Province of China. Organic carbon isotope values display a range between -30.8%0 and -24.7%0 with clear stratigraphic variations. Carbonate carbon isotope data vary between 0.1%o and +6%0. Positive j13C values from sediments with Gaojiashan biota reflect temporal variations in carbon turnover, i.e. an increasing in photosynthetic carbon fixation followed by an increasing subsequent fractional organic carbon burial, and that related to bio- radiation such as increasing algae, bacteria, and original creatures productivity in biomass. These secular variations are interpreted to reflect perturbations of the regional carbon cycle, specifically changes in the fractional burial of organic carbon, and discuss the relationship between Gaojiashan biota and paleoenvrionmental variation.展开更多
Developing mathematical models for high Knudsen number(Kn)flow for isotopic gas fractionation in tight sedimentary rocks is still challenging.In this study,carbon isotopic reversals(δ^(13)C_(1)>δ^(13)C_(2))were f...Developing mathematical models for high Knudsen number(Kn)flow for isotopic gas fractionation in tight sedimentary rocks is still challenging.In this study,carbon isotopic reversals(δ^(13)C_(1)>δ^(13)C_(2))were found for four Longmaxi shale samples based on gas degassing experiments.Gas in shale with higher gas content exhibits larger reversal.Then,a mathematical model was developed to simulate the carbon isotopic reversals of methane and ethane.This model is based on these hypotheses:(i)diffusion flow is dominating during gas transport process;(ii)diffusion coefficients are nonlinear depending on concentration gradient.Our model not only shows a good agreement with isotopic reversals,but also well predicts gas production rates by selecting appropriate exponents m and m^(*) of gas pressure gradient,where m is for ^(12)C and m^(*)is for ^(13)C.Moreover,the(m−m^(*))value has a positive correlation with fractionation level.(m1−m1^(*))of methane are much higher than that of ethane.Finally,the predicted carbon isotopic reversal magnitude(δ^(13)C_(1)−δ^(13)C_(2))exhibits a positive relationship with total gas content since gas in shale with higher gas content experiences a more extensive high Kn number diffusion flow.As a result,our model demonstrates an impressive agreement with the experimental carbon isotopic reversal data.展开更多
The Kalatongke Cu-Ni sulfide deposits located in the East Junggar terrane, northern Xinjiang, western China are the largest magmatic sulfide deposits in the Central Asian Orogenic Belt (CAOB). The chemical and carbo...The Kalatongke Cu-Ni sulfide deposits located in the East Junggar terrane, northern Xinjiang, western China are the largest magmatic sulfide deposits in the Central Asian Orogenic Belt (CAOB). The chemical and carbon isotopic compositions of the volatiles trapped in olivine, pyroxene and sulfide mineral separates were analyzed by vacuum stepwise-heating mass spectrometry. The results show that the released volatiles are concentrated at three temperature intervals of 200-400°C, 400-900°C and 900-1200°C. The released volatiles from silicate mineral separates at 400-900°C and 900-1200°C have similar chemical and carbon isotopic compositions, which are mainly composed of H2O (av. ~92 mol%) with minor H2, CO2, H2S and SO2, and they are likely associated with the ore-forming magmatic volatiles. Light δ13CCO2 values (from -20.86‰ to -12.85‰) of pyroxene indicate crustal contamination occurred prior to or synchronous with pyroxene crystallization of mantlederived ore-forming magma. The elevated contents of H2 and H2O in the olivine and pyroxene suggest a deep mantle-originated ore-forming volatile mixed with aqueous volatiles from recycled subducted slab. High contents of CO2 in the ore-forming magma volatiles led to an increase in oxygen fugacity, and thereby reduced the solubility of sulfur in the magma, then triggered sulfur saturation followed by sulfide melt segregation; CO2 contents correlated with Cu contents in the whole rocks suggest that a supercritical state of CO2 in the ore-forming magma system under high temperature and pressure conditions might play a key role in the assemblage of huge Cu and Ni elements. The volatiles released from constituent minerals of intrusion 1# have more CO2 and SO2 oxidized gases, higher CO2/CH4 and SO2/H2S ratios and lighter δ13CCO2 than those of intrusions 2# and 3#. This combination suggests that the higher oxidation state of the volatiles in intrusion 1# than intrusions 2# and 3#, which could be one of key ore-forming factors for large amounts of ores and high contents of Cu and Ni in intrusion 1#. The volatiles released at 200-400°C are dominated by H2O with minor CO2, N2+CO and SO2, with δ13CCO2 values (-25.66‰ to -22.98‰) within the crustal ranges, and are considered to be related to secondary tectonic-hydrothermal activities.展开更多
Secular variations of carbon isotopic composition of organic carbon can be used in the study of global environmental variation, the carbon cycle, stratigraphic delimitation, and biological evolution, etc. Organic carb...Secular variations of carbon isotopic composition of organic carbon can be used in the study of global environmental variation, the carbon cycle, stratigraphic delimitation, and biological evolution, etc. Organic carbon isotopic analysis of the Nangao and Zhalagou sections in eastern Gnizhou reveals a negative excursion near the Precambrian-Cambrian boundary that correlates with a distinct carbonate carbon isotopic negative excursion at this boundary globally. Our results also demonstrate that several alternating positive and negative shifts occur in the Meishucunian, and an obvious negative anomaly appears at the boundary between the Meishucunian and Qiongzhusian. The isotope values are stable in the middle and lower parts but became more positive in the upper part of the Qiongzhusian. Evolution of organic carbon isotopes from the two sections in the deepwater facies can be well correlated with that of the carbonate carbon isotopes from the section in the shallow water facies. Integrated with other stratigraphic tools, we can precisely establish a lower Cambrian stratigraphic framework from shallow sheff to deep basin of the Yangtze Platform.展开更多
This paper gives the stable carbon isotopic data in coals from the Late Namurian to Kazanian stages in the Serteng Mt., Xishan and Huainan coalfields of the North China Platform. Its stratigraphic pattern shows that s...This paper gives the stable carbon isotopic data in coals from the Late Namurian to Kazanian stages in the Serteng Mt., Xishan and Huainan coalfields of the North China Platform. Its stratigraphic pattern shows that several isotopic shifts are apparent, and the large δ13C negative shifts (approximately 2.5 to 3.0 %%) occurred during the Stephanian, Artinskian and Kazanian are observed in three Permo-Carboniferous coalfields. Those negative shifts are neither related to the coal rank and coal macerals, nor caused by the variety of peat-forming plants. The general decrease in the δ13C values of the Stephanian, Artinskian and Kazanian coals is consistent with an overall decrease in the δ13C values of ambient atmospheric CO2 and/or a relative increase in atmospheric Pco2 during the coal-forming periods. Therefore the authors postulate that the oxidation of peat, and the δ13C-depleted CO2 flux into the atmosphere during the above stages may have contributed to coeval palaeoclimatic warming by way of the greenhouse effect.展开更多
Because of the unique geographical location and important ecological effect of the Qinling Mountains, reconstruction of its vegetation and climate needs comprehensive research. We need to consider a multiple-proxy app...Because of the unique geographical location and important ecological effect of the Qinling Mountains, reconstruction of its vegetation and climate needs comprehensive research. We need to consider a multiple-proxy approach to gain more information on recovering the paleovegetation and climate in the Qinling Mountains. Black carbon (BC) is produced by the incomplete combustion of vegetation and fossil fuels, and is a good proxy, recording paleoenvironmental information. However, in the Qinling Mountains, what are the characteristics of the BC, and whether BC stable carbon isotope (δ^13CBc) can be used as a new proxy to study ancient vegetation, still need further study. In order to establish a sound basis for studying paleoenvironmental by BC proxy in the Qinling Mountains, we carried out systematic and detailed study on modern process of BC on the northern slope of the mountains. We analyzed stable carbon isotopes and carbon concentration of organic carbon (% SOC, δ^13Csoc) and BC (%BC, δ^13CBc), and identified the pollen assemblages from systematically sampled surface soil. The results show that the calculated ratio of C4 plants in the vegetation (%C4) based on the δ13Csoc data reflects a similar distribution of C4 plants in the surface vegetation and the pollen assemblage. The δ^13Cac values have a strong positive correlation with δ13Csoc values, and their difference (△13CSOC-BC) is in the low range. These data indicate that δ^13CBC and δ^13CSOC have very similar characteristics. Surface soil δ13BC values can indicate surface vegetation as effectively as δ^13Csoc values, and the δ^13CBC proxy can be used effectively in paleovegetational research in the northern slope of Qinling Mountains.展开更多
The organic geochemical characteristics of hydrogen-rich coal in southern China were investigated synthetically through organic geochemistry and carbon isotope analyses.The results showed that the hydrogen contents of...The organic geochemical characteristics of hydrogen-rich coal in southern China were investigated synthetically through organic geochemistry and carbon isotope analyses.The results showed that the hydrogen contents of the test samples were more than 5.0% and the H/C atomic ratios were between 0.76-1.06.Samples were found to be composed mostly of Type Ⅱ-Ⅲ℃ kerogen,consistent with good hydrocarbon-generation potential.The R_(o)(0.54-1.10%)and T_(max)(430-453℃)values imply that the hydrogen-rich coals were in low maturity to mature stages.Stable carbon isotopic ratios(δ^(13)C_(org))of the samples used varied from −24.5‰ to −23.4‰,the barkinite content ranging from 13.9% to 83.3%,indicating a predominantly terrestrial origin with marine influence during coal formation.Some organic geochemical parameters showed corresponding changes as the hydrogen content increased from 5.0% to 7.0%,however,the source inputs changed significantly when hydrogen content was greater than 6.0%.Terrestrial higher plants gradually become predominant within the coal-forming materials,whereas this dominant position is not apparent at lower hydrogen contents,which is attributable to the strong seawater effect during the hydrogen-rich coal formation process.展开更多
Original organisms are the biological precursors of organic matter in source rocks. Original organisms in source rocks are informative for oil-source rock correlation and hydrocarbon potential evaluation, especially f...Original organisms are the biological precursors of organic matter in source rocks. Original organisms in source rocks are informative for oil-source rock correlation and hydrocarbon potential evaluation, especially for source rocks which have high-over level of thermal maturity. Systematic identification of original organism assemblages of the Lower Paleozoic potential source rocks and detailed carbon isotopic composition of kerogen analyses were conducted for four outcrop sections in the Tarim basin. Results indicated that the original organism assemblages of the lower part of the Lower Cambrian were composed mainly of benthic algae, whereas those of the Upper Cambrian and the Ordovician were characterized by planktonic algae. Kerogen carbon isotopic data demonstrated that the δ13 Ckerogen values of source rocks dominated by benthic algae are lower than-34‰, whereas the δ13 Ckerogen values of source rocks dominated by planktonic algae are higher than-30‰ in general. We tentatively suggested that the carbon species those are utilized by algae and the carbon isotopic fractionation during photosynthesis are the major controls for the δ13 Ckerogen values in the Lower Paleozoic source rocks in the Tarim basin. Correlating the δ13 C values of oils exploited in the Tarim basin, the original organism assemblages, and δ13 Ckerogen values of source rocks, it implied that the Lower Paleozoic oils exploited in the Tarim basin should be sourced from the source rocks with original organism assemblages dominated by planktonic algae, and the hydrocarbon sourced from the Cambrian benthic algae should be of great exploration potential in future. Original organism assemblages in source rocks can provide important clues for oil-source rocks correlation, especially for the source rocks with high thermal maturity.展开更多
To understand the influence of the diagenetic water medium on the isotopic compositions of thermogenic coalbed gas, both hydrous and anhydrous closed-system pyrolyses were performed at temperatures of 250°C to 65...To understand the influence of the diagenetic water medium on the isotopic compositions of thermogenic coalbed gas, both hydrous and anhydrous closed-system pyrolyses were performed at temperatures of 250°C to 650°C on an herbaceous marsh peat. Compared to the results of anhydrous pyrolysis, the hydrocarbon gases generated from hydrous pyrolyses have very different hydrogen isotopic compositions. However, the carbon isotopic compositions of the hydrocarbon gases became only slightly heavier in hydrous pyrolysis, compared to that from anhydrous pyrolysis. With the progress of thermal evolution from peat to a more advanced thermal maturity of vitrinite reflectance values(Ro) of 5.5% during the pyrolysis, the difference in the average δD value increased from 52‰ to 64‰ between the hydrous pyrolysis with saltwater and anhydrous pyrolysis and increased from 18‰ to 29‰ between the hydrous pyrolysis with freshwater and anhydrous pyrolysis, respectively. The difference in the average δ^(13)C value was only 1‰–2‰ between the hydrous and anhydrous pyrolysis. The relationships between the δD values of the generated hydrocarbon gases and Ro values as well as among δD values of the hydrocarbon gas species are established. The close relationships among these parameters suggest that the water medium had a significant effect on the hydrogen isotopic composition and a minimal effect on the carbon isotopic composition of the hydrocarbon gases. The results of these pyrolyses may provide information for the understanding of the genesis of coalbed gas from herbaceous marsh material with the participation of different diagenetic water media.展开更多
Stable carbon isotopic compositions of n-alkanes in surface sediments of the Bohai and North Yellow Seas were investigated to elucidate sources of sedimentary organic matter in these seas. The long-chain n-alkanes in ...Stable carbon isotopic compositions of n-alkanes in surface sediments of the Bohai and North Yellow Seas were investigated to elucidate sources of sedimentary organic matter in these seas. The long-chain n-alkanes in surface sediments are predominantly long-chain C27, C29, and C31 types, with obvious odd carbon predominance. The δ13 C values of long-chain n-C27, n-C29, and n-C31 alkanes are-30.8% ± 0.5‰,-31.9% ± 0.6‰, and-32.1% ± 1.0‰, respectively, within the range of n-alkanes of C3 terrestrial higher plants. This suggests that sedimentary n-alkanes are derived mainly from terrestrial higher plants. Compound-specific carbon isotopic analysis of long-chain n-alkanes indicates that C3 terrestrial higher plants predominate(64%–79%), with angiosperms being the main contributors. The n-alkane δ13 C values indicate that mid-chain n-alkanes in sediments are derived mainly from aquatic emergent macrophytes, with significant petroleum pollution and bacterial degradation sources for short-chain n-alkanes.展开更多
The Permian global mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region should display certain responses during the evolution of carbon isotope. In this paper, the Permian ...The Permian global mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region should display certain responses during the evolution of carbon isotope. In this paper, the Permian carbon isotopic evolution in the Upper Yangtze region is examined through systematic stratotype section sampling and determination of 13 C in the northern Upper-Yangtze regions and Southern China. Additionally, the carbon isotopic evolution response characteristics of the geological events in the region are evaluated, comparing the sea-level changes in the Upper Yangtze region and the global sea-level change curves. Results of this study indicated that the carbon isotopic curves of the Permian in the Upper Yangtze region are characterized by higher background carbonisotope baseline values, with three distinct negative excursions, which are located at the Middle–Late Permian boundary and the late period and end of the Late Permian. The three distinct negative excursions provide an insightful record of the global Permian mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region. The first negative excursion at the Middle–Late Permian boundary reflected the eruption of the Emeishan flood basalts, a decrease in sea level, and biological extinction events of different genera in varying degrees. The second negative excursion in the Late Permian included a decrease in sea level and large-scale biological replacement events. The third negative excursion of the carbon isotope at the end of the Permian corresponded unusually to a rise rather than a decrease in sea level, and it revealed the largest biological mass extinction event in history.展开更多
The comparison between the carbon isotope and the index of ring width of a pine disc from the Tuomuer Peak region in Xinjiang shows that the effects of climate changes on the tree-ring growth and carbon isotopic fract...The comparison between the carbon isotope and the index of ring width of a pine disc from the Tuomuer Peak region in Xinjiang shows that the effects of climate changes on the tree-ring growth and carbon isotopic fractionation varies with time. The reason is probably relative to the characters of climate changes and adaptability of the tree-ring growth to climate changes. The relationships between the atmospheric CO2 level and the revised δ13Cair by the tree-ring carbon isotope indicate that the carbon cycle is not in a steady state, but under a stage-change condition in this area. It also can be concluded that the ratio of CO2 from the terrestrial eco-system has increased, and the flux of CO2 exchange between the atmosphere and the biosphere was gradually increasing over the past century. In addition, the results also confirm the validity and superiority of the carbon isotope to the research of the water-use efficiency.展开更多
Methane (CH4) is one of important greenhouse gases with chemical activity. The determination of isotopic compositions for CH4 emitted from the soils helps us to understand its production mechanisms. CH4 isotope meas...Methane (CH4) is one of important greenhouse gases with chemical activity. The determination of isotopic compositions for CH4 emitted from the soils helps us to understand its production mechanisms. CH4 isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of CH4 have been reported from Antarctic tundra soils. In this paper, ornithogenic soil profiles were collected from four penguin colonies, and potential CH4 production rates and its 13C ratio (δ13C) were investigated based upon laboratory incubation experiments. The mean CH4 production rates are highly variable in these soil profiles, ranging from 0.7 to 20.3μg CH4-C kg-1·h-1. These omithogenic soils had high potential production rates of CH4 under ambient air incubation or under N2 incubation, indicating the importance of potential CH4 emissions from penguin colonies. Most of the soil samples had higher δ13C-CH4 under N2 incubation (-39.28%-43.53%) than under the ambient air incubation (-42.81%-57.19%). Highly anaerobic conditions were conducive to the production of CI-h enriched in 13C, and acetic acid reduction under N2 incubation might be a predominant source for soil CH4 production. Overall the δ13C-CH4 showed a significant negative correlation with CH4 production rates in ornithogenic tundra soils under N2 incubation (R2=0.41,p〈0.01) or under the ambient air incubation (RE=0.50,p〈0.01). Potential CH4 production from ornithogenic soils showed a significant positive correlation with total phosphorus (TP) and NH4+-N contents, pH and soil moisture (Mc), but the δ13C-CH4 showed a significant negative correlation with TP and NH4+ -N contents, pH and Me, indicating that the deposition amount of penguin guano increased potential CH4 production rates from tundra soils, but decreased the δ13C-CH4. The CH4 emissions from the ornithogenic soils affect carbon isotopic compositions of atmospheric CH4 in coastal Antarctica.展开更多
The stable carbon isotope compositions (δ13C) of individual aromatic hydrocarbons have been analyzed in sulfur-rich and sulfur-lean crude oils from the Huanghekou Depression, Bohai Bay Basin. The δ13C values of indi...The stable carbon isotope compositions (δ13C) of individual aromatic hydrocarbons have been analyzed in sulfur-rich and sulfur-lean crude oils from the Huanghekou Depression, Bohai Bay Basin. The δ13C values of individual aromatic hydrocarbons, including alkylbenzenes, alkylnaphthalenes, alkylphenanthrenes, alkylfluorenes and alkyldibenzothiophenes, are reported. The main aims are to find out the origin of these oils and their relationship to paleoclimate. The distribution of aromatic hydrocarbons and maturity parameters show the oils all stay in the low-mature to mature stage. Meanwhile, aromatic hydrocarbons are mainly derived from the diagenetic/catagenetic origin. The δ13C values for 1,2,4-trimethylbenzene (−30.7‰ to −28.8‰) and 1,2,3,4-tetramethylbenzene (−32.4‰ to −26.3‰) indicate the algae-derived organic matter for alkylbenzenes. Some isomers, such as 1,7-+1,3-+1,6-dimethylnaphthalene, 1,2,5-trimethylnaphthalene, 1,2,5,6-+1,2,3,5-tetramethylnaphthalene, 1,10-+1,3-+3,10-+3,9-dimethylphenanthrenes, 1,6-+2,9-+2,5-dimethylphenanthrenes and 4,9-+4,10-+1,9- dimethylphenanthrenes show isotopic depletion (−34.9‰ to −25.2‰), indicating the major contribution of algae for these compounds. Meanwhile, isotopically depleted (−33.6‰ to −26.7‰) alkyldibenzothiophenes represent the algae input. δ13C values for mainly algae-derived naphthalene to trimethylnaphthalenes of sulfur-rich oils are more enriched than those of sulfur-lean oil, with the most significant difference of 4.4‰, indicating that the aridity of the environment and stratified water column result in the enrichment in 13C.展开更多
The origin and genetic types of natural gas in the Sichuan Basin are still disputed.To classify the origin and genetic types in different areas,the paper analyzes the carbon isotopic composition of gases and geologic ...The origin and genetic types of natural gas in the Sichuan Basin are still disputed.To classify the origin and genetic types in different areas,the paper analyzes the carbon isotopic composition of gases and geologic features in the Sichuan Basin.The results showed that the gas sourced from terrestrial layers is typically characterized by terrestrial origin and was mainly accumulated nearby to form reservoir.The carbon isotopic composition of gas showed a normal combination sequence distribution,suggesting that natural gas in continental strata is not affected by secondary alteration or that this deformation is very weak.The gas source is singular,and only gas from the southern and northern Sichuan Basin shows the characteristic of mixed sources.However,marine gas presents the characteristics of an oil-formed gas.The carbon isotopic composition of natural gas in the western and central part of the basin mostly distributes in a normal combination sequence,and few of them showed an inversion,indicating that the gas perhaps had not experienced secondary alteration.The carbon isotopic composition of marine-origin gas in the southern,northern and eastern Sichuan Basin displays a completely different distribution pattern,which is probably caused by different mixing ratio of gas with multi-source and multi-period.展开更多
The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic comp...The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic compositions,and light hydrocarbons were utilized to shed light on the origins of the hydrocarbon fluids in the L1gas pool.The hydrocarbon fluids in the L1 gas pool are proposed to be a mixture of three unique components:mid-maturity oil from the middle Paleocene coastal marine Lingfeng source rock,oil-associated(late oil window)gas generated from the lower Paleocene lacustrine Yueguifeng source rock,and primary microbial gas from the paralic deposits of the upper Paleocene Mingyuefeng source rock.Here,for the first time,the hydrocarbon gases in the L1 gas pool are diagnosed as mixed oil-associated sapropelic-type gas and microbial gas via four pieces of principal evidence:(1)The abnormal carbon isotopic distributions of all methane homologues from C_(1)(CH_(4)or methane)to C_(5)(C_(5)H_(12)or pentane)shown in the Chung plot;(2)the diagnostic~(13)C-depleted C_(1)compared with the thermogenic sapropelic-type gas model,whileδ^(13)C_(2)(C_(2)H_(6)or ethane)andδ^(13)C_(3)(C_(3)H_(8)or propane)both fit perfectly;(3)the excellent agreement of the calculated carbon isotopic compositions of the pure thermogenic gas with the results of the thermal simulated gas from the type-II1 kerogen-rich Yueguifeng source rock;and(4)the oil-associated gas inferred from various binary genetic diagrams with an abnormally elevated gas oil ratio.Overall,the natural gases of the L1 gas pool were quantified in this study to comprise approximately 13%microbial gas,nearly 48%oil-associated sapropelic-type gas,and 39%of nonhydrocarbon gas.The microbial gas is interpreted to have been codeposited and entrained in the humic-kerogen-rich Mingyuefeng Formation under favorable lowtemperature conditions during the late Paleocene-middle Eocene.The microbial gas subsequently leaked into the structurally and stratigraphically complex L1 trap with oil-associated sapropelic-type gas from the Yueguifeng source rock during the late Eocene-Oligocene uplifting event.A small amount of humic-kerogen-generated oil in the L1 gas pool is most likely to be derived from the underlying Lingfeng source rock.The detailed geological and geochemical considerations of source rocks are discussed to explain the accumulation history of hydrocarbon fluids in the L1 gas pool.This paper,therefore,represents an effort to increase the awareness of the pitfalls of various genetic diagrams,and an integrated geochemical and geological approach is required for hydrocarbonsource correlation.展开更多
Low maturity coal samples were taken from the Ordos Basin to conduct gold tube thermal simulation experiment in a closed system,and the characteristics of the products were analyzed to find out the fractionation mecha...Low maturity coal samples were taken from the Ordos Basin to conduct gold tube thermal simulation experiment in a closed system,and the characteristics of the products were analyzed to find out the fractionation mechanism of carbon isotopes and the causes of abnormal carbon isotopic compositions of natural gas.At the heating rates of 2℃/h(slow)and 20℃/h(rapid),the low maturity coal samples of the Ordos Basin had the maximum yields of alkane gas of 302.74 mL/g and 230.16 mL/g,theδ13C1 ranges of-34.8‰to-23.6‰and-35.5‰to-24.0‰;δ13C2 ranges of-28.0‰to-9.0‰and-28.9‰to-8.3‰;andδ13C3 ranges of-25.8‰to-14.7‰and-26.4‰to-13.2‰,respectively.Alkane gas in the thermal simulation products of rapid temperature rise process showed obvious partial reversal of carbon isotope series at 550℃,and at other temperatures showed positive carbon isotope series.In the two heating processes,theδ13C1 turned lighter first and then heavier,and the non-monotonic variation of theδ13C1 values is because the early CH4 is from different parent materials resulted from heterogeneity of organic matter or the carbon isotope fractionation formed by activation energy difference of early enriched 12CH4 and late enriched 13CH4.The reversal of carbon isotope values of heavy hydrocarbon gas can occur not only in high to over mature shale gas(oil-type gas),but also in coal-derived gas.Through thermal simulation experiment of toluene,it is confirmed that the carbon isotope value of heavy hydrocarbon gas can be reversed and inversed at high to over mature stage.The isotope fractionation effect caused by demethylation and methyl linkage of aromatic hydrocarbons may be an important reason for carbon isotope inversion and reversal of alkane gas at the high to over mature stage.展开更多
Carbon isotopes have been used extensively in tracing the sources of oil.However,primary source facies and secondary alteration controls on oil isotopic compositions have not been well resolved,resulting in applicatio...Carbon isotopes have been used extensively in tracing the sources of oil.However,primary source facies and secondary alteration controls on oil isotopic compositions have not been well resolved,resulting in application uncertainties.A case study was undertaken for an alkaline lacustrine oil system in a lower Permian formation in the Junggar Basin,NW China.Results indicate that increasing maturity causes the carbon isotopic composition to become heavier for only short–middle-chain compounds,whereas source facies-related carbon assimilation controls the compositions of short-,middle-,and long-chain compounds.In particular,light-carbon assimilation during organic-matter degradation makes the isotopic composition lighter,whereas heavy carbon from the water mass makes it heavier.Accordingly,oils in this study area were divided into Type U and Type N oils based on individual compound carbon isotopic compositions,reflecting the difference in source facies in a highly saline and reducing stratified water environment.The results provide a better understanding of the controls on carbon isotopes in oil in sedimentary basins,reducing the uncertainty in oil–source correlation and addressing the origin of oil.展开更多
基金Supported by the National Natural Science Foundation of China(41472120)General Project of National Natural Science Foundation of China(42272188)+1 种基金Special Fund of PetroChina and New Energy Branch(2023YQX10101)Petrochemical Joint Fund of Fund Committee(U20B6001)。
文摘Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.
文摘Significantly high abundant methyl-Methyl Trimethyl Tridecyl Chromans (MTTCs) have been detected in aromatic hydrocarbon fractions in crude oils from the Jizhong Depression and Jianghan Basin. The distribution of these compounds is dominated by methyl-MTTC and dimethyl- MTTC series, which indicate diagenetic products of a hypersaline depositional environment in the early stage and show a low degree of methylation. The occurrence of significantly high abundant methyl-MTTC depends mainly on good preservation conditions with a strongly reductive, hypersaline and water-columned depositional environment and subsequent non-intensive diagenetic transformations. The stable carbon isotopic compositions of the methyl-MTTCs and dimethyl-MTTCs in two samples are far different from the stable carbon isotopic composition of C30 hopane of apparent bacteria biogenesis (up to 4.11‰ and 5.75‰, respectively). This obviously demonstrates that the methyl-MTTC and dimethyl-MTTCs cannot be of bacteria origin, which is different from the previous point of view about non-photosynthetic bacteria products or possible bacteria-reworked products. On the contrary, the stable carbon isotopic compositions of methyl-MTTC and dimethyl-MTTCs in the two samples were similar to that of the same carbon-numbered n-alkanes (nC27-nC28-nC29), which indicates that they share the same source origin. Especially in the crude oil from the Zhao61 well, stable carbon isotopic compositions are also similar to that of the same carbon-numbered steranes with ααα- 20R isomer (mostly less than 0.4‰). In consideration of the results of previous studies on saline lake ecological sedimentation, the authors hold that the methyl-MTTC and dimethyl-MTTCs in the saline lake sediments should be of algal biogenesis origin.
基金support by the One Hundred Talents Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (NSFC Nos. 40972023,40930211, 40902003, 41173008)
文摘Metazoan fossils in the Gaojiashan Biota are famous for being well preserved and may provide new insights into the early evolution and skeletonization of Metazoans. We are studying the isotopic compositions of organic and carbonate carbon from a sequence of sedimentary rocks at the Gaojiashan section, northern Yangtze Platform, Shaanxi Province of China. Organic carbon isotope values display a range between -30.8%0 and -24.7%0 with clear stratigraphic variations. Carbonate carbon isotope data vary between 0.1%o and +6%0. Positive j13C values from sediments with Gaojiashan biota reflect temporal variations in carbon turnover, i.e. an increasing in photosynthetic carbon fixation followed by an increasing subsequent fractional organic carbon burial, and that related to bio- radiation such as increasing algae, bacteria, and original creatures productivity in biomass. These secular variations are interpreted to reflect perturbations of the regional carbon cycle, specifically changes in the fractional burial of organic carbon, and discuss the relationship between Gaojiashan biota and paleoenvrionmental variation.
基金support from Enterprise Innovation and Development Joint Fund of National Natural Science Foundation of China"Enrichment regularity and development mechanism of deep marine shale gas(U19B600303)"SINOPEC Science and Technology Department Project"Research on Precision Characterization of Shale Pore and Fluid Dynamic Monitoring Technology(P20059-8)"。
文摘Developing mathematical models for high Knudsen number(Kn)flow for isotopic gas fractionation in tight sedimentary rocks is still challenging.In this study,carbon isotopic reversals(δ^(13)C_(1)>δ^(13)C_(2))were found for four Longmaxi shale samples based on gas degassing experiments.Gas in shale with higher gas content exhibits larger reversal.Then,a mathematical model was developed to simulate the carbon isotopic reversals of methane and ethane.This model is based on these hypotheses:(i)diffusion flow is dominating during gas transport process;(ii)diffusion coefficients are nonlinear depending on concentration gradient.Our model not only shows a good agreement with isotopic reversals,but also well predicts gas production rates by selecting appropriate exponents m and m^(*) of gas pressure gradient,where m is for ^(12)C and m^(*)is for ^(13)C.Moreover,the(m−m^(*))value has a positive correlation with fractionation level.(m1−m1^(*))of methane are much higher than that of ethane.Finally,the predicted carbon isotopic reversal magnitude(δ^(13)C_(1)−δ^(13)C_(2))exhibits a positive relationship with total gas content since gas in shale with higher gas content experiences a more extensive high Kn number diffusion flow.As a result,our model demonstrates an impressive agreement with the experimental carbon isotopic reversal data.
基金financially supported by NSF of China(Grant 41072056, 40772058, 91014003, 40534020 and40772062)Key Projects of China Geological Survey(1212011121092)MOE (311010)
文摘The Kalatongke Cu-Ni sulfide deposits located in the East Junggar terrane, northern Xinjiang, western China are the largest magmatic sulfide deposits in the Central Asian Orogenic Belt (CAOB). The chemical and carbon isotopic compositions of the volatiles trapped in olivine, pyroxene and sulfide mineral separates were analyzed by vacuum stepwise-heating mass spectrometry. The results show that the released volatiles are concentrated at three temperature intervals of 200-400°C, 400-900°C and 900-1200°C. The released volatiles from silicate mineral separates at 400-900°C and 900-1200°C have similar chemical and carbon isotopic compositions, which are mainly composed of H2O (av. ~92 mol%) with minor H2, CO2, H2S and SO2, and they are likely associated with the ore-forming magmatic volatiles. Light δ13CCO2 values (from -20.86‰ to -12.85‰) of pyroxene indicate crustal contamination occurred prior to or synchronous with pyroxene crystallization of mantlederived ore-forming magma. The elevated contents of H2 and H2O in the olivine and pyroxene suggest a deep mantle-originated ore-forming volatile mixed with aqueous volatiles from recycled subducted slab. High contents of CO2 in the ore-forming magma volatiles led to an increase in oxygen fugacity, and thereby reduced the solubility of sulfur in the magma, then triggered sulfur saturation followed by sulfide melt segregation; CO2 contents correlated with Cu contents in the whole rocks suggest that a supercritical state of CO2 in the ore-forming magma system under high temperature and pressure conditions might play a key role in the assemblage of huge Cu and Ni elements. The volatiles released from constituent minerals of intrusion 1# have more CO2 and SO2 oxidized gases, higher CO2/CH4 and SO2/H2S ratios and lighter δ13CCO2 than those of intrusions 2# and 3#. This combination suggests that the higher oxidation state of the volatiles in intrusion 1# than intrusions 2# and 3#, which could be one of key ore-forming factors for large amounts of ores and high contents of Cu and Ni in intrusion 1#. The volatiles released at 200-400°C are dominated by H2O with minor CO2, N2+CO and SO2, with δ13CCO2 values (-25.66‰ to -22.98‰) within the crustal ranges, and are considered to be related to secondary tectonic-hydrothermal activities.
文摘Secular variations of carbon isotopic composition of organic carbon can be used in the study of global environmental variation, the carbon cycle, stratigraphic delimitation, and biological evolution, etc. Organic carbon isotopic analysis of the Nangao and Zhalagou sections in eastern Gnizhou reveals a negative excursion near the Precambrian-Cambrian boundary that correlates with a distinct carbonate carbon isotopic negative excursion at this boundary globally. Our results also demonstrate that several alternating positive and negative shifts occur in the Meishucunian, and an obvious negative anomaly appears at the boundary between the Meishucunian and Qiongzhusian. The isotope values are stable in the middle and lower parts but became more positive in the upper part of the Qiongzhusian. Evolution of organic carbon isotopes from the two sections in the deepwater facies can be well correlated with that of the carbonate carbon isotopes from the section in the shallow water facies. Integrated with other stratigraphic tools, we can precisely establish a lower Cambrian stratigraphic framework from shallow sheff to deep basin of the Yangtze Platform.
文摘This paper gives the stable carbon isotopic data in coals from the Late Namurian to Kazanian stages in the Serteng Mt., Xishan and Huainan coalfields of the North China Platform. Its stratigraphic pattern shows that several isotopic shifts are apparent, and the large δ13C negative shifts (approximately 2.5 to 3.0 %%) occurred during the Stephanian, Artinskian and Kazanian are observed in three Permo-Carboniferous coalfields. Those negative shifts are neither related to the coal rank and coal macerals, nor caused by the variety of peat-forming plants. The general decrease in the δ13C values of the Stephanian, Artinskian and Kazanian coals is consistent with an overall decrease in the δ13C values of ambient atmospheric CO2 and/or a relative increase in atmospheric Pco2 during the coal-forming periods. Therefore the authors postulate that the oxidation of peat, and the δ13C-depleted CO2 flux into the atmosphere during the above stages may have contributed to coeval palaeoclimatic warming by way of the greenhouse effect.
基金supported by the National Natural Science Foundation of China(41102106)
文摘Because of the unique geographical location and important ecological effect of the Qinling Mountains, reconstruction of its vegetation and climate needs comprehensive research. We need to consider a multiple-proxy approach to gain more information on recovering the paleovegetation and climate in the Qinling Mountains. Black carbon (BC) is produced by the incomplete combustion of vegetation and fossil fuels, and is a good proxy, recording paleoenvironmental information. However, in the Qinling Mountains, what are the characteristics of the BC, and whether BC stable carbon isotope (δ^13CBc) can be used as a new proxy to study ancient vegetation, still need further study. In order to establish a sound basis for studying paleoenvironmental by BC proxy in the Qinling Mountains, we carried out systematic and detailed study on modern process of BC on the northern slope of the mountains. We analyzed stable carbon isotopes and carbon concentration of organic carbon (% SOC, δ^13Csoc) and BC (%BC, δ^13CBc), and identified the pollen assemblages from systematically sampled surface soil. The results show that the calculated ratio of C4 plants in the vegetation (%C4) based on the δ13Csoc data reflects a similar distribution of C4 plants in the surface vegetation and the pollen assemblage. The δ^13Cac values have a strong positive correlation with δ13Csoc values, and their difference (△13CSOC-BC) is in the low range. These data indicate that δ^13CBC and δ^13CSOC have very similar characteristics. Surface soil δ13BC values can indicate surface vegetation as effectively as δ^13Csoc values, and the δ^13CBC proxy can be used effectively in paleovegetational research in the northern slope of Qinling Mountains.
基金supported by the National Natural Science Foundation of China(Research Project No.41472132,41102097)。
文摘The organic geochemical characteristics of hydrogen-rich coal in southern China were investigated synthetically through organic geochemistry and carbon isotope analyses.The results showed that the hydrogen contents of the test samples were more than 5.0% and the H/C atomic ratios were between 0.76-1.06.Samples were found to be composed mostly of Type Ⅱ-Ⅲ℃ kerogen,consistent with good hydrocarbon-generation potential.The R_(o)(0.54-1.10%)and T_(max)(430-453℃)values imply that the hydrogen-rich coals were in low maturity to mature stages.Stable carbon isotopic ratios(δ^(13)C_(org))of the samples used varied from −24.5‰ to −23.4‰,the barkinite content ranging from 13.9% to 83.3%,indicating a predominantly terrestrial origin with marine influence during coal formation.Some organic geochemical parameters showed corresponding changes as the hydrogen content increased from 5.0% to 7.0%,however,the source inputs changed significantly when hydrogen content was greater than 6.0%.Terrestrial higher plants gradually become predominant within the coal-forming materials,whereas this dominant position is not apparent at lower hydrogen contents,which is attributable to the strong seawater effect during the hydrogen-rich coal formation process.
基金funded by National Natural Science Foundation of China (Grant No. U1663201, 41472099 and 41872155)the Strategic Priority Research Program of the Chinese Academy of Science (Grant No. XDA14010404)CNPC innovation Foundation (2016D-5007-0102)
文摘Original organisms are the biological precursors of organic matter in source rocks. Original organisms in source rocks are informative for oil-source rock correlation and hydrocarbon potential evaluation, especially for source rocks which have high-over level of thermal maturity. Systematic identification of original organism assemblages of the Lower Paleozoic potential source rocks and detailed carbon isotopic composition of kerogen analyses were conducted for four outcrop sections in the Tarim basin. Results indicated that the original organism assemblages of the lower part of the Lower Cambrian were composed mainly of benthic algae, whereas those of the Upper Cambrian and the Ordovician were characterized by planktonic algae. Kerogen carbon isotopic data demonstrated that the δ13 Ckerogen values of source rocks dominated by benthic algae are lower than-34‰, whereas the δ13 Ckerogen values of source rocks dominated by planktonic algae are higher than-30‰ in general. We tentatively suggested that the carbon species those are utilized by algae and the carbon isotopic fractionation during photosynthesis are the major controls for the δ13 Ckerogen values in the Lower Paleozoic source rocks in the Tarim basin. Correlating the δ13 C values of oils exploited in the Tarim basin, the original organism assemblages, and δ13 Ckerogen values of source rocks, it implied that the Lower Paleozoic oils exploited in the Tarim basin should be sourced from the source rocks with original organism assemblages dominated by planktonic algae, and the hydrocarbon sourced from the Cambrian benthic algae should be of great exploration potential in future. Original organism assemblages in source rocks can provide important clues for oil-source rocks correlation, especially for the source rocks with high thermal maturity.
基金supported by the National Natural Science Foundation of China(Grant nos.41772108 and 41472121)
文摘To understand the influence of the diagenetic water medium on the isotopic compositions of thermogenic coalbed gas, both hydrous and anhydrous closed-system pyrolyses were performed at temperatures of 250°C to 650°C on an herbaceous marsh peat. Compared to the results of anhydrous pyrolysis, the hydrocarbon gases generated from hydrous pyrolyses have very different hydrogen isotopic compositions. However, the carbon isotopic compositions of the hydrocarbon gases became only slightly heavier in hydrous pyrolysis, compared to that from anhydrous pyrolysis. With the progress of thermal evolution from peat to a more advanced thermal maturity of vitrinite reflectance values(Ro) of 5.5% during the pyrolysis, the difference in the average δD value increased from 52‰ to 64‰ between the hydrous pyrolysis with saltwater and anhydrous pyrolysis and increased from 18‰ to 29‰ between the hydrous pyrolysis with freshwater and anhydrous pyrolysis, respectively. The difference in the average δ^(13)C value was only 1‰–2‰ between the hydrous and anhydrous pyrolysis. The relationships between the δD values of the generated hydrocarbon gases and Ro values as well as among δD values of the hydrocarbon gas species are established. The close relationships among these parameters suggest that the water medium had a significant effect on the hydrogen isotopic composition and a minimal effect on the carbon isotopic composition of the hydrocarbon gases. The results of these pyrolyses may provide information for the understanding of the genesis of coalbed gas from herbaceous marsh material with the participation of different diagenetic water media.
基金financially supported by the Ministry of Science and Technology of People’s Republic of China (No. 2016YFA0600904)the National Natural Science Foundation of China (No. 41476058)。
文摘Stable carbon isotopic compositions of n-alkanes in surface sediments of the Bohai and North Yellow Seas were investigated to elucidate sources of sedimentary organic matter in these seas. The long-chain n-alkanes in surface sediments are predominantly long-chain C27, C29, and C31 types, with obvious odd carbon predominance. The δ13 C values of long-chain n-C27, n-C29, and n-C31 alkanes are-30.8% ± 0.5‰,-31.9% ± 0.6‰, and-32.1% ± 1.0‰, respectively, within the range of n-alkanes of C3 terrestrial higher plants. This suggests that sedimentary n-alkanes are derived mainly from terrestrial higher plants. Compound-specific carbon isotopic analysis of long-chain n-alkanes indicates that C3 terrestrial higher plants predominate(64%–79%), with angiosperms being the main contributors. The n-alkane δ13 C values indicate that mid-chain n-alkanes in sediments are derived mainly from aquatic emergent macrophytes, with significant petroleum pollution and bacterial degradation sources for short-chain n-alkanes.
基金financially supported by The National Key Research Project of China (No.2016YFC0601003)Northwest University Graduate Innovation and Creativity Funds (YZZ17198)the National Natural Science Foundation of China (Grants No. 41390451 and No. 41172101)
文摘The Permian global mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region should display certain responses during the evolution of carbon isotope. In this paper, the Permian carbon isotopic evolution in the Upper Yangtze region is examined through systematic stratotype section sampling and determination of 13 C in the northern Upper-Yangtze regions and Southern China. Additionally, the carbon isotopic evolution response characteristics of the geological events in the region are evaluated, comparing the sea-level changes in the Upper Yangtze region and the global sea-level change curves. Results of this study indicated that the carbon isotopic curves of the Permian in the Upper Yangtze region are characterized by higher background carbonisotope baseline values, with three distinct negative excursions, which are located at the Middle–Late Permian boundary and the late period and end of the Late Permian. The three distinct negative excursions provide an insightful record of the global Permian mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region. The first negative excursion at the Middle–Late Permian boundary reflected the eruption of the Emeishan flood basalts, a decrease in sea level, and biological extinction events of different genera in varying degrees. The second negative excursion in the Late Permian included a decrease in sea level and large-scale biological replacement events. The third negative excursion of the carbon isotope at the end of the Permian corresponded unusually to a rise rather than a decrease in sea level, and it revealed the largest biological mass extinction event in history.
基金The work was supported by the National NaturalScience Foundation of China (Grant Nos.49333040 and 49903007).
文摘The comparison between the carbon isotope and the index of ring width of a pine disc from the Tuomuer Peak region in Xinjiang shows that the effects of climate changes on the tree-ring growth and carbon isotopic fractionation varies with time. The reason is probably relative to the characters of climate changes and adaptability of the tree-ring growth to climate changes. The relationships between the atmospheric CO2 level and the revised δ13Cair by the tree-ring carbon isotope indicate that the carbon cycle is not in a steady state, but under a stage-change condition in this area. It also can be concluded that the ratio of CO2 from the terrestrial eco-system has increased, and the flux of CO2 exchange between the atmosphere and the biosphere was gradually increasing over the past century. In addition, the results also confirm the validity and superiority of the carbon isotope to the research of the water-use efficiency.
基金supported by the National Natural Science Foundation of China (Grant nos.41576181,41176171)Specialized Research Fund for the Doctoral Program of Higher Education (Grant no.20123402110026)
文摘Methane (CH4) is one of important greenhouse gases with chemical activity. The determination of isotopic compositions for CH4 emitted from the soils helps us to understand its production mechanisms. CH4 isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of CH4 have been reported from Antarctic tundra soils. In this paper, ornithogenic soil profiles were collected from four penguin colonies, and potential CH4 production rates and its 13C ratio (δ13C) were investigated based upon laboratory incubation experiments. The mean CH4 production rates are highly variable in these soil profiles, ranging from 0.7 to 20.3μg CH4-C kg-1·h-1. These omithogenic soils had high potential production rates of CH4 under ambient air incubation or under N2 incubation, indicating the importance of potential CH4 emissions from penguin colonies. Most of the soil samples had higher δ13C-CH4 under N2 incubation (-39.28%-43.53%) than under the ambient air incubation (-42.81%-57.19%). Highly anaerobic conditions were conducive to the production of CI-h enriched in 13C, and acetic acid reduction under N2 incubation might be a predominant source for soil CH4 production. Overall the δ13C-CH4 showed a significant negative correlation with CH4 production rates in ornithogenic tundra soils under N2 incubation (R2=0.41,p〈0.01) or under the ambient air incubation (RE=0.50,p〈0.01). Potential CH4 production from ornithogenic soils showed a significant positive correlation with total phosphorus (TP) and NH4+-N contents, pH and soil moisture (Mc), but the δ13C-CH4 showed a significant negative correlation with TP and NH4+ -N contents, pH and Me, indicating that the deposition amount of penguin guano increased potential CH4 production rates from tundra soils, but decreased the δ13C-CH4. The CH4 emissions from the ornithogenic soils affect carbon isotopic compositions of atmospheric CH4 in coastal Antarctica.
基金supported by the National Natural Science Foundation of China(No.41872131).
文摘The stable carbon isotope compositions (δ13C) of individual aromatic hydrocarbons have been analyzed in sulfur-rich and sulfur-lean crude oils from the Huanghekou Depression, Bohai Bay Basin. The δ13C values of individual aromatic hydrocarbons, including alkylbenzenes, alkylnaphthalenes, alkylphenanthrenes, alkylfluorenes and alkyldibenzothiophenes, are reported. The main aims are to find out the origin of these oils and their relationship to paleoclimate. The distribution of aromatic hydrocarbons and maturity parameters show the oils all stay in the low-mature to mature stage. Meanwhile, aromatic hydrocarbons are mainly derived from the diagenetic/catagenetic origin. The δ13C values for 1,2,4-trimethylbenzene (−30.7‰ to −28.8‰) and 1,2,3,4-tetramethylbenzene (−32.4‰ to −26.3‰) indicate the algae-derived organic matter for alkylbenzenes. Some isomers, such as 1,7-+1,3-+1,6-dimethylnaphthalene, 1,2,5-trimethylnaphthalene, 1,2,5,6-+1,2,3,5-tetramethylnaphthalene, 1,10-+1,3-+3,10-+3,9-dimethylphenanthrenes, 1,6-+2,9-+2,5-dimethylphenanthrenes and 4,9-+4,10-+1,9- dimethylphenanthrenes show isotopic depletion (−34.9‰ to −25.2‰), indicating the major contribution of algae for these compounds. Meanwhile, isotopically depleted (−33.6‰ to −26.7‰) alkyldibenzothiophenes represent the algae input. δ13C values for mainly algae-derived naphthalene to trimethylnaphthalenes of sulfur-rich oils are more enriched than those of sulfur-lean oil, with the most significant difference of 4.4‰, indicating that the aridity of the environment and stratified water column result in the enrichment in 13C.
基金supported by the National Key Research and Development Plan Program(Grant No. 2016YFC0601005)
文摘The origin and genetic types of natural gas in the Sichuan Basin are still disputed.To classify the origin and genetic types in different areas,the paper analyzes the carbon isotopic composition of gases and geologic features in the Sichuan Basin.The results showed that the gas sourced from terrestrial layers is typically characterized by terrestrial origin and was mainly accumulated nearby to form reservoir.The carbon isotopic composition of gas showed a normal combination sequence distribution,suggesting that natural gas in continental strata is not affected by secondary alteration or that this deformation is very weak.The gas source is singular,and only gas from the southern and northern Sichuan Basin shows the characteristic of mixed sources.However,marine gas presents the characteristics of an oil-formed gas.The carbon isotopic composition of natural gas in the western and central part of the basin mostly distributes in a normal combination sequence,and few of them showed an inversion,indicating that the gas perhaps had not experienced secondary alteration.The carbon isotopic composition of marine-origin gas in the southern,northern and eastern Sichuan Basin displays a completely different distribution pattern,which is probably caused by different mixing ratio of gas with multi-source and multi-period.
基金The“Seven Year Action Plan”East China Sea Special Project of CNOOC under contract No.CNOOC-KJ 135 ZDXM39 SH02。
文摘The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic compositions,and light hydrocarbons were utilized to shed light on the origins of the hydrocarbon fluids in the L1gas pool.The hydrocarbon fluids in the L1 gas pool are proposed to be a mixture of three unique components:mid-maturity oil from the middle Paleocene coastal marine Lingfeng source rock,oil-associated(late oil window)gas generated from the lower Paleocene lacustrine Yueguifeng source rock,and primary microbial gas from the paralic deposits of the upper Paleocene Mingyuefeng source rock.Here,for the first time,the hydrocarbon gases in the L1 gas pool are diagnosed as mixed oil-associated sapropelic-type gas and microbial gas via four pieces of principal evidence:(1)The abnormal carbon isotopic distributions of all methane homologues from C_(1)(CH_(4)or methane)to C_(5)(C_(5)H_(12)or pentane)shown in the Chung plot;(2)the diagnostic~(13)C-depleted C_(1)compared with the thermogenic sapropelic-type gas model,whileδ^(13)C_(2)(C_(2)H_(6)or ethane)andδ^(13)C_(3)(C_(3)H_(8)or propane)both fit perfectly;(3)the excellent agreement of the calculated carbon isotopic compositions of the pure thermogenic gas with the results of the thermal simulated gas from the type-II1 kerogen-rich Yueguifeng source rock;and(4)the oil-associated gas inferred from various binary genetic diagrams with an abnormally elevated gas oil ratio.Overall,the natural gases of the L1 gas pool were quantified in this study to comprise approximately 13%microbial gas,nearly 48%oil-associated sapropelic-type gas,and 39%of nonhydrocarbon gas.The microbial gas is interpreted to have been codeposited and entrained in the humic-kerogen-rich Mingyuefeng Formation under favorable lowtemperature conditions during the late Paleocene-middle Eocene.The microbial gas subsequently leaked into the structurally and stratigraphically complex L1 trap with oil-associated sapropelic-type gas from the Yueguifeng source rock during the late Eocene-Oligocene uplifting event.A small amount of humic-kerogen-generated oil in the L1 gas pool is most likely to be derived from the underlying Lingfeng source rock.The detailed geological and geochemical considerations of source rocks are discussed to explain the accumulation history of hydrocarbon fluids in the L1 gas pool.This paper,therefore,represents an effort to increase the awareness of the pitfalls of various genetic diagrams,and an integrated geochemical and geological approach is required for hydrocarbonsource correlation.
基金Supported by the National Natural Science Foundation of China(41902160,41625009)the China Postdoctoral Science Foundation(2019M650967,2020T130721)the China National Science and Technology Major Project(2016ZX05007-001)
文摘Low maturity coal samples were taken from the Ordos Basin to conduct gold tube thermal simulation experiment in a closed system,and the characteristics of the products were analyzed to find out the fractionation mechanism of carbon isotopes and the causes of abnormal carbon isotopic compositions of natural gas.At the heating rates of 2℃/h(slow)and 20℃/h(rapid),the low maturity coal samples of the Ordos Basin had the maximum yields of alkane gas of 302.74 mL/g and 230.16 mL/g,theδ13C1 ranges of-34.8‰to-23.6‰and-35.5‰to-24.0‰;δ13C2 ranges of-28.0‰to-9.0‰and-28.9‰to-8.3‰;andδ13C3 ranges of-25.8‰to-14.7‰and-26.4‰to-13.2‰,respectively.Alkane gas in the thermal simulation products of rapid temperature rise process showed obvious partial reversal of carbon isotope series at 550℃,and at other temperatures showed positive carbon isotope series.In the two heating processes,theδ13C1 turned lighter first and then heavier,and the non-monotonic variation of theδ13C1 values is because the early CH4 is from different parent materials resulted from heterogeneity of organic matter or the carbon isotope fractionation formed by activation energy difference of early enriched 12CH4 and late enriched 13CH4.The reversal of carbon isotope values of heavy hydrocarbon gas can occur not only in high to over mature shale gas(oil-type gas),but also in coal-derived gas.Through thermal simulation experiment of toluene,it is confirmed that the carbon isotope value of heavy hydrocarbon gas can be reversed and inversed at high to over mature stage.The isotope fractionation effect caused by demethylation and methyl linkage of aromatic hydrocarbons may be an important reason for carbon isotope inversion and reversal of alkane gas at the high to over mature stage.
基金funded by the National Natural Science Foundation of China(Grants No.42102148 and 42230808).
文摘Carbon isotopes have been used extensively in tracing the sources of oil.However,primary source facies and secondary alteration controls on oil isotopic compositions have not been well resolved,resulting in application uncertainties.A case study was undertaken for an alkaline lacustrine oil system in a lower Permian formation in the Junggar Basin,NW China.Results indicate that increasing maturity causes the carbon isotopic composition to become heavier for only short–middle-chain compounds,whereas source facies-related carbon assimilation controls the compositions of short-,middle-,and long-chain compounds.In particular,light-carbon assimilation during organic-matter degradation makes the isotopic composition lighter,whereas heavy carbon from the water mass makes it heavier.Accordingly,oils in this study area were divided into Type U and Type N oils based on individual compound carbon isotopic compositions,reflecting the difference in source facies in a highly saline and reducing stratified water environment.The results provide a better understanding of the controls on carbon isotopes in oil in sedimentary basins,reducing the uncertainty in oil–source correlation and addressing the origin of oil.