A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: ...A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: preconcentration,reduction and stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder as working electrode;a 0.10 mol/L HCl solution containing 40 μmol/L BPR as accumulation medium;a 0.20 mol/L HCl solution as reduction and stripping electrolyte;accumulation time,150 s;reduction potential and time,-0.50 V,60 s;scan range from -0.50 to 0.20 V. Interferences by other ions were studied as well. The detection limit was found to be 0.5 nmol/L for 150 s preconcentration. The linear range was from 1.0 nmol/L to 0.50 μmol/L. Application of the proposed method to the determination of antimony in water and human hair samples gave good results.展开更多
A novel method was described for the determination of ultra trace amount of scandium based on the cathodic adsorptive voltammetry of the mix-polynuclear complex of scandium-calcium-alizarin red S at a carbon paste ele...A novel method was described for the determination of ultra trace amount of scandium based on the cathodic adsorptive voltammetry of the mix-polynuclear complex of scandium-calcium-alizarin red S at a carbon paste electrode (CPE). The 2nd-order derivative linear scan voltammograms of the adsorbed complex were recorded by model JP-303 polarographic analyzer from 0.0 to -1.0 V (vs. SCE). The experimental conditions of the working procedure were optimized. The results show that the complex can be adsorbed on the surface of the CPE, yielding one peak at -0.61 V, corresponding to the reduction of the alizarin red S in the mix-polynuclear complex at the electrode. The detection limit of Sc^(3+) is 1.0×10^(-10) mol·L^(-1) for 3 min of accumulation time. The procedure was successfully applied to the determination of trace amount of scandium in the sample ores.展开更多
A new sensitive adsorptive voltammetric method was described for the determination of zirconium at a carbon paste electrode (CPE) in the presence of alizarin complexone (ALC). Optimal analytical conditions are: 1.0?0...A new sensitive adsorptive voltammetric method was described for the determination of zirconium at a carbon paste electrode (CPE) in the presence of alizarin complexone (ALC). Optimal analytical conditions are: 1.0?0-6 or 5.0?0-7 mol/L ALC, 0. 20 mol/L HAC-NaAc (pH 4.3), accumulation for 60 s at 0 V (vs. SCE), and linear scanning from 0 V to 1.0 V at 250 mV/s. The peak potential of the complex is at 0.81 V. By using a model JP-303 polarographic analyzer, 2.0?0-10 mol/L (S/N=3) zirconium can be detected with a 90 s accumulation, when the 2nd-order derivative linear sweep technique is used, and the linear range is 6.0?0-10-2.0?0-8 mol/L (5.0?0-7 mol/L ALC) and 2.0?0-8-2.0?0-7 mol/L (1.0?0-6 mol/L ALC), respectively. The developed method was applied to the determination of trace zirconium in the ore samples with satisfactory results.展开更多
The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hyd...The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.展开更多
In this work,we describe a new strategy for the electrochemical determination of captopril(CA) using ferrocenemonocarboxylic acid as a mediator and multiwall carbon nanotubes as sensors in aqueous solution at pH 7.0...In this work,we describe a new strategy for the electrochemical determination of captopril(CA) using ferrocenemonocarboxylic acid as a mediator and multiwall carbon nanotubes as sensors in aqueous solution at pH 7.0.The diffusion coefficient(D),and the kinetic parameters such as electron transfer coefficient(α).and heterogeneous rate constant(kh),for CA were also determined using electrochemical approaches.Under the optimized conditions,the electrocatalytic oxidation peak current of captopril showed two linear dynamic ranges with a detection limit of 0.3×10^-6 mol L^-1 captopril.The linear calibration range was 0.8×10^(-6) to 65×10^-6 mol L^-1 using cyclic voltammetry.Finally,this modified electrode was also examined as a selective,simple and precise new electrochemical sensor for the determination of captopril in real samples such as drug and patient human urine.展开更多
A novel sensor for the determination of warfarin based on a simple and sensitive method was developed on multiwalled-carbon-nanotube modified ZnCrFeO4 carbon paste electrodes(MWCNT/ZnCrFeO4/CPEs). Cyclic voltammetry...A novel sensor for the determination of warfarin based on a simple and sensitive method was developed on multiwalled-carbon-nanotube modified ZnCrFeO4 carbon paste electrodes(MWCNT/ZnCrFeO4/CPEs). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of warfarin at the chemically modified electrode. According to the results, MWCNT/ZnCrFeO4/CPEs showed high electrocatalytic activity for warfarin oxidation, producing a sharp oxidation peak current at about +0.97 vs Ag/AgCl reference electrode at pH = 4.0. The peak current was linearly dependent on warfarin concentration over the range of 0.02–920.0 μmol/L with a detection limit of 0.003 μmol/L. In addition, chronoamperometry was also used to determine warfarin's catalytic rate constant and diffusion coefficient at MWCNT/ZnCrFeO4/CPEs.展开更多
A new modified carbon paste electrode based on cyclam as a modifier was prepared for the determination of Co(Ⅱ) ions. The proposed electrode shows a Nernstian slope 28.4 mV per decade over a wide concentration range ...A new modified carbon paste electrode based on cyclam as a modifier was prepared for the determination of Co(Ⅱ) ions. The proposed electrode shows a Nernstian slope 28.4 mV per decade over a wide concentration range 5.0×10 -6_1.0×10 -1 mol/L of Co 2+ ions with detection limit 2.5×10 -6 mol/L. The sensor exhibits good selectivities for Co 2+ over a wide variety of other cations. It can be used as an indicator electrode in potentiometric titration of cobalt(Ⅱ) ions as well as in direct determination of cobalt(Ⅱ) ions in wastewater of acidic cobalt electroplating bath. The electrode shows Nernestian behavior in a solution of 25% ethanol.展开更多
Electrochemical behavior of a carbon paste electrode (CPE) modified with nickel(II)\|5, 11, 17, 23\|tetra\|tert\|butyl\|25, 27\|bis(diethylcarbamoylmethoxy)calix\arene (Ni(Ⅱ)\|L) complex and its electrocatalytic acti...Electrochemical behavior of a carbon paste electrode (CPE) modified with nickel(II)\|5, 11, 17, 23\|tetra\|tert\|butyl\|25, 27\|bis(diethylcarbamoylmethoxy)calix\arene (Ni(Ⅱ)\|L) complex and its electrocatalytic activity towards the oxidation of hydrogen peroxide were investigated by cyclic voltammetric technique in a 5.0×10 -2 mol/L NaClO 4+ 1.0×10 -3 mol/L NaOH solution. It was found that Ni(II)\|L acts as an effective catalyst for the oxidation of hydrogen peroxide. The modified electrode exhibited a linear response over a hydrogen peroxide concentrations in the range of 2.0×10 -6 \|1.0×10 -4 mol/L with a detection limit as low as 1.0×10 -6 mol/L. The relative standard deviation was 3.5% for 5 successive determinations of H 2 O 2 at 1.0×10 -5 mol/L. The modified electrode was used successfully in rainwater analysis.展开更多
he present paper covers the construction and behaviour of a mixed binder car-bon paste electrode modified by surfactant system appropriate for the anodic strip-ping voltammetric quantitation of sulphadiazine. The mixe...he present paper covers the construction and behaviour of a mixed binder car-bon paste electrode modified by surfactant system appropriate for the anodic strip-ping voltammetric quantitation of sulphadiazine. The mixed binder consisted ofglycerol and liquid paraffin. On this electrode in a PH 8. 20 buffer solution sulpha-diazine yields a sensitive anodic stripping voltammetric wave at 0. 82 V. It can beused for the determination of trace amounts of drug, the linear range of the peakcurrent to the sulphadiazine concentration being from 1. 0 x 10-7 to 5. 0 x 10-5mol/L, and the detection limit being 6. 6 x 10-9 mol/L with a relative standard de-viation of 2. 6% (n= 15).The proposed method was used to determine the drug inurine samples.展开更多
This paper covers the construction and behaviour of a mixed binder carbon paste electrode system appropriate for the cathodic stripping voltammetric quantitation of iso-niazid. The mixed binder consisted of glycerol a...This paper covers the construction and behaviour of a mixed binder carbon paste electrode system appropriate for the cathodic stripping voltammetric quantitation of iso-niazid. The mixed binder consisted of glycerol and liquid paraffin. At the mixed binder carbon paste electrodes in a pH 3.0 buffer solution, isoniazid showed two sensitive cathodic stripping voltammetric wave at-0. 75 V (p1) and-0. 88 V (p2) , respectively. The p2 can be used for the determination of trace amounts of isoniazid, the linear range of the peak current to the isoniazid concentration being from 5. 0×10-7 to 5.0×10-5 mol/L, and the limit of detection being 1. 0×10-7 mol/L with a relative standard deviation of 6. 0%(n=10). The proposed method was directly used to determine the drug in blood serum without the pretreatment of blood serum.展开更多
A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was de...A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.展开更多
Colloid gold nanoparticle-based layer-by-layer amplification approach was applied to enhance the electrochemical detection sensitivity of DNA hybridization at carbon nanotube modified carbon paste electrodes (CNTPEs...Colloid gold nanoparticle-based layer-by-layer amplification approach was applied to enhance the electrochemical detection sensitivity of DNA hybridization at carbon nanotube modified carbon paste electrodes (CNTPEs). Streptavidin was immobilized onto the surface of CNTPEs, and the conjugation of biotin labeled target oligonucle,otides to the above immobilized streptavidin was performed, followed by the hybridization of target oligonucleotides with the gold nanoparticle-labeled DNA probe and then the layer-by-layer enhanced connection of gold nanoparticles, on which oligonucleotides complementary to the DNA probe were attached, to the hybridization system. The differential pulse voltammetry (DPV) signal of total gold nanoparticles was monitored. It was found that the layer-by-layer colloidal gold DPV detection enhanced the sensitivity by about one order of magnitude compared with that of one-layer detection. One-base mismatched DNA and complementary DNA could be distinguished clearly.展开更多
Highly sensitive voltammetric method for the determination of estrogens, based on the enhancement effect of cetyltrimethylammonium bromide (CTAB) has been described. In the presence of CTAB, the oxidation peak current...Highly sensitive voltammetric method for the determination of estrogens, based on the enhancement effect of cetyltrimethylammonium bromide (CTAB) has been described. In the presence of CTAB, the oxidation peak currents of estrogens (estradiol, estrone, estriol, estradiol valerate and diethylstilbestrol) as the carbon paste electrode (CPE) increased significantly after open-circuit accumulation. The peak current was proportional to the concentration of estradiol over the range from 5×10?9 to 2.5×10?6 mol·L?1. The detection limit was 8×10?10 mol·L?1 at 6 min of accumulation. The total amounts of estrogens in the blood serums were determined and the average recovery was 104.92%. Under the conditions used, the electrode process of estradiol was examined the mechanism for peak current enhancement was also discussed.展开更多
A novel electrochemical immunoassay for cardiac troponin Ⅰ (cTnI) combining the concepts of the dual monoclonal antibody "sandwich" principle, the silver enhancement on the nano-gold particle, and the SBA-15 meso...A novel electrochemical immunoassay for cardiac troponin Ⅰ (cTnI) combining the concepts of the dual monoclonal antibody "sandwich" principle, the silver enhancement on the nano-gold particle, and the SBA-15 mesoporous modified carbon paste electrode (SBA-MCPE) is described. Four main steps were carried out to obtain the analytical signal, i.e., electrode preparation, immunoreaction, silver enhancement, and anodic stripping voltammetric detection. A linear relationship between the anodic stripping peak current and concentration of cTnI from 0.5 to 5.0 ng/mL and a limit of detection of 0.2 ng/mL of cTnI were obtained.展开更多
The electroanalysis of dopamine (DA) and ascorbic acid (AA) by square wave voltammetry has been performed at a modified carbon paste electrode with macrocyclic ligand 1, 4, 8, 11-tetraazacyclotetradecane (cyclam) and ...The electroanalysis of dopamine (DA) and ascorbic acid (AA) by square wave voltammetry has been performed at a modified carbon paste electrode with macrocyclic ligand 1, 4, 8, 11-tetraazacyclotetradecane (cyclam) and monolayer of Ni (II) cyclam. In pH 7.2 buffer solutions, the electrostatic reaction of AA with di-positive monolayer shifts the oxidation potential to less positive potential, while the electrostatic repulsion of DA with the monolayer shifts the oxidation potential of DA to more positive potential. The separation between the oxidation peaks of AA and DA at the present di-positive monolayer modified electrode (252 mV) was larger than that (187 mV) at the cyclam modified electrode. In addition, the catalytic oxidation of AA by oxidized DA has been advantageously eliminated at the modified carbon paste electrode with cyclam and Ni (II) cyclam complex. Thus, the determination of DA in the presence of an excess of AA is possible with the present modified electrodes.展开更多
Electrochemical investigation of catechol using square wave voltammetry with anthraquinone modified carbon paste electrode was found to be very sensitive. Compared with the unmodified carbon paste electrode, the anthr...Electrochemical investigation of catechol using square wave voltammetry with anthraquinone modified carbon paste electrode was found to be very sensitive. Compared with the unmodified carbon paste electrode, the anthraquinone modified electrode remarkably increases the peak currents of catechol, and greatly lowers the peak potential separation. Two varieties of tea, namely green, and black variety: Wush Wush tea, from Ethiopia, known by its brand name were investigated. Responses for the extracts using ethanol: water (1:4) % v/v showed green tea to be superior in catechol content. Optimization of different variables such as pH of working solution, modifier composition and square wave parameters such as frequency, amplitude and step potential were made to improve the method efficiency during the experiment. The reproducibility for the nine repeated analysis of 80 μmol·L-1 of catechol gave a relative standard deviation of 3.65% and linear calibration plots were obtained in the range 6 to 80 μmol·L-1 with (R = 0.998) and the detection limit with (S/N = 3) was as low as 2.155 x 10-7 mol·L-1.展开更多
A simple method for anodic stripping voltammetric determination of nitrite using carbon paste electrode modified with biomolecular chitosan, is described. In this method, the electrode is activated electrochemically b...A simple method for anodic stripping voltammetric determination of nitrite using carbon paste electrode modified with biomolecular chitosan, is described. In this method, the electrode is activated electrochemically by scanning 5 replicates over the potential range from +500 to +1400 mV immersing in 0.5 M HCl solution. Following this step, the nitrite sample containing 0.1 M KCl is preconcentrated on the activated electrode at +500 mV for 30 s. The deposited anions are then oxidized by different modes of sweep in the oxidation direction. Chemical and electrical parameters affecting the voltammetric measurements are optimized. The peak current is linear proportional to the NO2- concentration within the range 0.41 - 4.1 μg/ml, with detection limit 0.187 μg/m using differential pulse mode. The relative standard deviation is 0.285% for 2.46 μg/ml (five replicates). No interference is observed due to oxygen dissolved in the sample so that nitrogen purging is not needed in this case. The result obtained by the modified electrode is more accurate and selective than the unmodified electrode.展开更多
Manganese is an essential micronutrient for all organisms;however at high concentrations it has a toxic effect. Manganese toxicity is a serious constraint to crop cultivation since it is taken-up by plants and can eas...Manganese is an essential micronutrient for all organisms;however at high concentrations it has a toxic effect. Manganese toxicity is a serious constraint to crop cultivation since it is taken-up by plants and can easily be passed into the food chain again causing symptoms of Parkinson’s disease. A fully validated square-wave adsorptive cathodic stripping voltammetry method has been developed for determination of Mn (II) as a complex with 2-(5’-bromo-2’-pyridylazo) 5-diethylaminophenol in aqueous solutions using a carbon paste electrode (CPE) modified with montmorillonite-Na clay. The results showed that the modified CPE (90% (w/w) graphite powder and 10% (w/w) montmorillonite-Na clay) exhibited excellent electrochemical activity towards the investigated Mn (II) complex in acetate buffer of pH = 5.0. Factors affecting the performance of the modified carbon paste electrode and the sensitivity of the described square- wave stripping voltammetry method, including the electrode composition, concentration of ligand, pulse parameters and preconcentration conditions were examined. A detection limit (S/N = 3) of 0.015μg·L-1 (2.73 × 10-10 mol·L-1) Mn (II) was achieved when a preconcentration time of 240 s was applied. Insignificant interferences from various inorganic and organic species were estimated. The described square-wave adsorptive cathodic stripping voltammetry method coupled with the modified carbon paste electrode has been successfully applied to Mn (II) analysis in different water samples.展开更多
This study presents the elaboration of a simple and cheap electrode made by carbon paste introduced into a cavity of electrode body, and used for the lead traces determination in tap water. A potentiostatic pre-electr...This study presents the elaboration of a simple and cheap electrode made by carbon paste introduced into a cavity of electrode body, and used for the lead traces determination in tap water. A potentiostatic pre-electrolysis at constant voltage enables the reduction of the lead (Pb2+) and the accumulation of the metallic lead at and into the carbon paste;the reoxidation of the Pb (Linear sweep voltammetry) leads to the anodic striping peak. The effect of the main operating parameters on the shape of the peak and the magnitude of the current was examined and their optimal values were determined. Then calibration was achieved and the method was successfully applied (using all the optimized parameters) to the determination of lead in water, with a detection limit of 0.138 μg·L-1. Compared to other methods (ICP-AES for example), the proposed method offers a satisfactory detection limit of the Pb2+ (0.138 μg·L-1) because of the important specific area of the carbon paste electrode, for a significantly lower cost. Besides, there is no observed loss in the electrode answer in terms of peak current, which means that there is no any irreversible steps nor deactivation of the electrode, even after ten successive measurements;only reduction of the lead followed by the deposit oxidation was observed at the electrode.展开更多
Promethazine modified carbon paste ion selective electrode has been prepared, based on the ion pair of promethazine hydrochloride Pm.Cl with sodium tetraphenyl boron(III) Pm-TPB dissolved in dioctyl phthalate DOP as a...Promethazine modified carbon paste ion selective electrode has been prepared, based on the ion pair of promethazine hydrochloride Pm.Cl with sodium tetraphenyl boron(III) Pm-TPB dissolved in dioctyl phthalate DOP as a pasting liquid. The electrode showed the linear response with mean calibration graph slope of 58 mV/decade at 25℃;at a concentration range and a lower detection limit of 1 × 10-5 -6 × 10-2 M and 8 × 10-6 M promethazine hydrochloride, respectively. The change of pH of the tested solution within the range 4.2 -6.8 did not affect the electrode performance. The electrode showed a very good selectivity toward Pm+ cations with respect to a large number of organic and inorganic cations and compounds. The standard addition and potentiometric titration methods were applied for the determination of promethazine hydrochloride in pure solution and in pharmaceutical preparations with an?average recovery range of 97.3% -101.4% and a mean relative standard deviation (RSD) of 0.35% -1.83 % which were of comparable accuracy and precision to the previously reported works.展开更多
文摘A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: preconcentration,reduction and stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder as working electrode;a 0.10 mol/L HCl solution containing 40 μmol/L BPR as accumulation medium;a 0.20 mol/L HCl solution as reduction and stripping electrolyte;accumulation time,150 s;reduction potential and time,-0.50 V,60 s;scan range from -0.50 to 0.20 V. Interferences by other ions were studied as well. The detection limit was found to be 0.5 nmol/L for 150 s preconcentration. The linear range was from 1.0 nmol/L to 0.50 μmol/L. Application of the proposed method to the determination of antimony in water and human hair samples gave good results.
文摘A novel method was described for the determination of ultra trace amount of scandium based on the cathodic adsorptive voltammetry of the mix-polynuclear complex of scandium-calcium-alizarin red S at a carbon paste electrode (CPE). The 2nd-order derivative linear scan voltammograms of the adsorbed complex were recorded by model JP-303 polarographic analyzer from 0.0 to -1.0 V (vs. SCE). The experimental conditions of the working procedure were optimized. The results show that the complex can be adsorbed on the surface of the CPE, yielding one peak at -0.61 V, corresponding to the reduction of the alizarin red S in the mix-polynuclear complex at the electrode. The detection limit of Sc^(3+) is 1.0×10^(-10) mol·L^(-1) for 3 min of accumulation time. The procedure was successfully applied to the determination of trace amount of scandium in the sample ores.
文摘A new sensitive adsorptive voltammetric method was described for the determination of zirconium at a carbon paste electrode (CPE) in the presence of alizarin complexone (ALC). Optimal analytical conditions are: 1.0?0-6 or 5.0?0-7 mol/L ALC, 0. 20 mol/L HAC-NaAc (pH 4.3), accumulation for 60 s at 0 V (vs. SCE), and linear scanning from 0 V to 1.0 V at 250 mV/s. The peak potential of the complex is at 0.81 V. By using a model JP-303 polarographic analyzer, 2.0?0-10 mol/L (S/N=3) zirconium can be detected with a 90 s accumulation, when the 2nd-order derivative linear sweep technique is used, and the linear range is 6.0?0-10-2.0?0-8 mol/L (5.0?0-7 mol/L ALC) and 2.0?0-8-2.0?0-7 mol/L (1.0?0-6 mol/L ALC), respectively. The developed method was applied to the determination of trace zirconium in the ore samples with satisfactory results.
文摘The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.
文摘In this work,we describe a new strategy for the electrochemical determination of captopril(CA) using ferrocenemonocarboxylic acid as a mediator and multiwall carbon nanotubes as sensors in aqueous solution at pH 7.0.The diffusion coefficient(D),and the kinetic parameters such as electron transfer coefficient(α).and heterogeneous rate constant(kh),for CA were also determined using electrochemical approaches.Under the optimized conditions,the electrocatalytic oxidation peak current of captopril showed two linear dynamic ranges with a detection limit of 0.3×10^-6 mol L^-1 captopril.The linear calibration range was 0.8×10^(-6) to 65×10^-6 mol L^-1 using cyclic voltammetry.Finally,this modified electrode was also examined as a selective,simple and precise new electrochemical sensor for the determination of captopril in real samples such as drug and patient human urine.
文摘A novel sensor for the determination of warfarin based on a simple and sensitive method was developed on multiwalled-carbon-nanotube modified ZnCrFeO4 carbon paste electrodes(MWCNT/ZnCrFeO4/CPEs). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of warfarin at the chemically modified electrode. According to the results, MWCNT/ZnCrFeO4/CPEs showed high electrocatalytic activity for warfarin oxidation, producing a sharp oxidation peak current at about +0.97 vs Ag/AgCl reference electrode at pH = 4.0. The peak current was linearly dependent on warfarin concentration over the range of 0.02–920.0 μmol/L with a detection limit of 0.003 μmol/L. In addition, chronoamperometry was also used to determine warfarin's catalytic rate constant and diffusion coefficient at MWCNT/ZnCrFeO4/CPEs.
文摘A new modified carbon paste electrode based on cyclam as a modifier was prepared for the determination of Co(Ⅱ) ions. The proposed electrode shows a Nernstian slope 28.4 mV per decade over a wide concentration range 5.0×10 -6_1.0×10 -1 mol/L of Co 2+ ions with detection limit 2.5×10 -6 mol/L. The sensor exhibits good selectivities for Co 2+ over a wide variety of other cations. It can be used as an indicator electrode in potentiometric titration of cobalt(Ⅱ) ions as well as in direct determination of cobalt(Ⅱ) ions in wastewater of acidic cobalt electroplating bath. The electrode shows Nernestian behavior in a solution of 25% ethanol.
文摘Electrochemical behavior of a carbon paste electrode (CPE) modified with nickel(II)\|5, 11, 17, 23\|tetra\|tert\|butyl\|25, 27\|bis(diethylcarbamoylmethoxy)calix\arene (Ni(Ⅱ)\|L) complex and its electrocatalytic activity towards the oxidation of hydrogen peroxide were investigated by cyclic voltammetric technique in a 5.0×10 -2 mol/L NaClO 4+ 1.0×10 -3 mol/L NaOH solution. It was found that Ni(II)\|L acts as an effective catalyst for the oxidation of hydrogen peroxide. The modified electrode exhibited a linear response over a hydrogen peroxide concentrations in the range of 2.0×10 -6 \|1.0×10 -4 mol/L with a detection limit as low as 1.0×10 -6 mol/L. The relative standard deviation was 3.5% for 5 successive determinations of H 2 O 2 at 1.0×10 -5 mol/L. The modified electrode was used successfully in rainwater analysis.
文摘he present paper covers the construction and behaviour of a mixed binder car-bon paste electrode modified by surfactant system appropriate for the anodic strip-ping voltammetric quantitation of sulphadiazine. The mixed binder consisted ofglycerol and liquid paraffin. On this electrode in a PH 8. 20 buffer solution sulpha-diazine yields a sensitive anodic stripping voltammetric wave at 0. 82 V. It can beused for the determination of trace amounts of drug, the linear range of the peakcurrent to the sulphadiazine concentration being from 1. 0 x 10-7 to 5. 0 x 10-5mol/L, and the detection limit being 6. 6 x 10-9 mol/L with a relative standard de-viation of 2. 6% (n= 15).The proposed method was used to determine the drug inurine samples.
文摘This paper covers the construction and behaviour of a mixed binder carbon paste electrode system appropriate for the cathodic stripping voltammetric quantitation of iso-niazid. The mixed binder consisted of glycerol and liquid paraffin. At the mixed binder carbon paste electrodes in a pH 3.0 buffer solution, isoniazid showed two sensitive cathodic stripping voltammetric wave at-0. 75 V (p1) and-0. 88 V (p2) , respectively. The p2 can be used for the determination of trace amounts of isoniazid, the linear range of the peak current to the isoniazid concentration being from 5. 0×10-7 to 5.0×10-5 mol/L, and the limit of detection being 1. 0×10-7 mol/L with a relative standard deviation of 6. 0%(n=10). The proposed method was directly used to determine the drug in blood serum without the pretreatment of blood serum.
文摘A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.
基金This work was financially supported by the National Natural Science Foundation of China (No. 60571032 90406016)+1 种基金the Doctoral Program of Higher Education for Funding 20050286014 Hunan Provincial Natural Science Foundation (05jj40053).
文摘Colloid gold nanoparticle-based layer-by-layer amplification approach was applied to enhance the electrochemical detection sensitivity of DNA hybridization at carbon nanotube modified carbon paste electrodes (CNTPEs). Streptavidin was immobilized onto the surface of CNTPEs, and the conjugation of biotin labeled target oligonucle,otides to the above immobilized streptavidin was performed, followed by the hybridization of target oligonucleotides with the gold nanoparticle-labeled DNA probe and then the layer-by-layer enhanced connection of gold nanoparticles, on which oligonucleotides complementary to the DNA probe were attached, to the hybridization system. The differential pulse voltammetry (DPV) signal of total gold nanoparticles was monitored. It was found that the layer-by-layer colloidal gold DPV detection enhanced the sensitivity by about one order of magnitude compared with that of one-layer detection. One-base mismatched DNA and complementary DNA could be distinguished clearly.
文摘Highly sensitive voltammetric method for the determination of estrogens, based on the enhancement effect of cetyltrimethylammonium bromide (CTAB) has been described. In the presence of CTAB, the oxidation peak currents of estrogens (estradiol, estrone, estriol, estradiol valerate and diethylstilbestrol) as the carbon paste electrode (CPE) increased significantly after open-circuit accumulation. The peak current was proportional to the concentration of estradiol over the range from 5×10?9 to 2.5×10?6 mol·L?1. The detection limit was 8×10?10 mol·L?1 at 6 min of accumulation. The total amounts of estrogens in the blood serums were determined and the average recovery was 104.92%. Under the conditions used, the electrode process of estradiol was examined the mechanism for peak current enhancement was also discussed.
文摘A novel electrochemical immunoassay for cardiac troponin Ⅰ (cTnI) combining the concepts of the dual monoclonal antibody "sandwich" principle, the silver enhancement on the nano-gold particle, and the SBA-15 mesoporous modified carbon paste electrode (SBA-MCPE) is described. Four main steps were carried out to obtain the analytical signal, i.e., electrode preparation, immunoreaction, silver enhancement, and anodic stripping voltammetric detection. A linear relationship between the anodic stripping peak current and concentration of cTnI from 0.5 to 5.0 ng/mL and a limit of detection of 0.2 ng/mL of cTnI were obtained.
文摘The electroanalysis of dopamine (DA) and ascorbic acid (AA) by square wave voltammetry has been performed at a modified carbon paste electrode with macrocyclic ligand 1, 4, 8, 11-tetraazacyclotetradecane (cyclam) and monolayer of Ni (II) cyclam. In pH 7.2 buffer solutions, the electrostatic reaction of AA with di-positive monolayer shifts the oxidation potential to less positive potential, while the electrostatic repulsion of DA with the monolayer shifts the oxidation potential of DA to more positive potential. The separation between the oxidation peaks of AA and DA at the present di-positive monolayer modified electrode (252 mV) was larger than that (187 mV) at the cyclam modified electrode. In addition, the catalytic oxidation of AA by oxidized DA has been advantageously eliminated at the modified carbon paste electrode with cyclam and Ni (II) cyclam complex. Thus, the determination of DA in the presence of an excess of AA is possible with the present modified electrodes.
文摘Electrochemical investigation of catechol using square wave voltammetry with anthraquinone modified carbon paste electrode was found to be very sensitive. Compared with the unmodified carbon paste electrode, the anthraquinone modified electrode remarkably increases the peak currents of catechol, and greatly lowers the peak potential separation. Two varieties of tea, namely green, and black variety: Wush Wush tea, from Ethiopia, known by its brand name were investigated. Responses for the extracts using ethanol: water (1:4) % v/v showed green tea to be superior in catechol content. Optimization of different variables such as pH of working solution, modifier composition and square wave parameters such as frequency, amplitude and step potential were made to improve the method efficiency during the experiment. The reproducibility for the nine repeated analysis of 80 μmol·L-1 of catechol gave a relative standard deviation of 3.65% and linear calibration plots were obtained in the range 6 to 80 μmol·L-1 with (R = 0.998) and the detection limit with (S/N = 3) was as low as 2.155 x 10-7 mol·L-1.
文摘A simple method for anodic stripping voltammetric determination of nitrite using carbon paste electrode modified with biomolecular chitosan, is described. In this method, the electrode is activated electrochemically by scanning 5 replicates over the potential range from +500 to +1400 mV immersing in 0.5 M HCl solution. Following this step, the nitrite sample containing 0.1 M KCl is preconcentrated on the activated electrode at +500 mV for 30 s. The deposited anions are then oxidized by different modes of sweep in the oxidation direction. Chemical and electrical parameters affecting the voltammetric measurements are optimized. The peak current is linear proportional to the NO2- concentration within the range 0.41 - 4.1 μg/ml, with detection limit 0.187 μg/m using differential pulse mode. The relative standard deviation is 0.285% for 2.46 μg/ml (five replicates). No interference is observed due to oxygen dissolved in the sample so that nitrogen purging is not needed in this case. The result obtained by the modified electrode is more accurate and selective than the unmodified electrode.
文摘Manganese is an essential micronutrient for all organisms;however at high concentrations it has a toxic effect. Manganese toxicity is a serious constraint to crop cultivation since it is taken-up by plants and can easily be passed into the food chain again causing symptoms of Parkinson’s disease. A fully validated square-wave adsorptive cathodic stripping voltammetry method has been developed for determination of Mn (II) as a complex with 2-(5’-bromo-2’-pyridylazo) 5-diethylaminophenol in aqueous solutions using a carbon paste electrode (CPE) modified with montmorillonite-Na clay. The results showed that the modified CPE (90% (w/w) graphite powder and 10% (w/w) montmorillonite-Na clay) exhibited excellent electrochemical activity towards the investigated Mn (II) complex in acetate buffer of pH = 5.0. Factors affecting the performance of the modified carbon paste electrode and the sensitivity of the described square- wave stripping voltammetry method, including the electrode composition, concentration of ligand, pulse parameters and preconcentration conditions were examined. A detection limit (S/N = 3) of 0.015μg·L-1 (2.73 × 10-10 mol·L-1) Mn (II) was achieved when a preconcentration time of 240 s was applied. Insignificant interferences from various inorganic and organic species were estimated. The described square-wave adsorptive cathodic stripping voltammetry method coupled with the modified carbon paste electrode has been successfully applied to Mn (II) analysis in different water samples.
文摘This study presents the elaboration of a simple and cheap electrode made by carbon paste introduced into a cavity of electrode body, and used for the lead traces determination in tap water. A potentiostatic pre-electrolysis at constant voltage enables the reduction of the lead (Pb2+) and the accumulation of the metallic lead at and into the carbon paste;the reoxidation of the Pb (Linear sweep voltammetry) leads to the anodic striping peak. The effect of the main operating parameters on the shape of the peak and the magnitude of the current was examined and their optimal values were determined. Then calibration was achieved and the method was successfully applied (using all the optimized parameters) to the determination of lead in water, with a detection limit of 0.138 μg·L-1. Compared to other methods (ICP-AES for example), the proposed method offers a satisfactory detection limit of the Pb2+ (0.138 μg·L-1) because of the important specific area of the carbon paste electrode, for a significantly lower cost. Besides, there is no observed loss in the electrode answer in terms of peak current, which means that there is no any irreversible steps nor deactivation of the electrode, even after ten successive measurements;only reduction of the lead followed by the deposit oxidation was observed at the electrode.
文摘Promethazine modified carbon paste ion selective electrode has been prepared, based on the ion pair of promethazine hydrochloride Pm.Cl with sodium tetraphenyl boron(III) Pm-TPB dissolved in dioctyl phthalate DOP as a pasting liquid. The electrode showed the linear response with mean calibration graph slope of 58 mV/decade at 25℃;at a concentration range and a lower detection limit of 1 × 10-5 -6 × 10-2 M and 8 × 10-6 M promethazine hydrochloride, respectively. The change of pH of the tested solution within the range 4.2 -6.8 did not affect the electrode performance. The electrode showed a very good selectivity toward Pm+ cations with respect to a large number of organic and inorganic cations and compounds. The standard addition and potentiometric titration methods were applied for the determination of promethazine hydrochloride in pure solution and in pharmaceutical preparations with an?average recovery range of 97.3% -101.4% and a mean relative standard deviation (RSD) of 0.35% -1.83 % which were of comparable accuracy and precision to the previously reported works.