Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivit...Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivity and large volume expansion during Li^(+)intercalation.Herein,we designed and constructed a structurally integrated 3D carbon tube(3D-CT)grid film with Mn_(3)O_(4)nanoparticles(Mn_(3)O_(4)-NPs)and carbon nanotubes(CNTs)filled in the inner cavity of CTs(denoted as Mn_(3)O_(4)-NPs/CNTs@3D-CT)as high-performance free-standing anode for LIBs.The Mn_(3)O_(4)-NPs/CNTs@3D-CT grid with Mn_(3)O_(4)-NPs filled in the inner cavity of 3D-CT not only afford sufficient space to overcome the damage caused by the volume expansion of Mn_(3)O_(4)-NPs during charge and discharge processes,but also achieves highly efficient channels for the fast transport of both electrons and Li+during cycling,thus offering outstanding electrochemical performance(865 mAh g^(-1)at 1 A g^(-1)after 300 cycles)and excellent rate capability(418 mAh g^(-1)at 4 A g^(-1))based on the total mass of electrode.The unique 3D-CT framework structure would open up a new route to the highly stable,high-capacity,and excellent cycle and high-rate performance free-standing electrodes for highperformance Li-ion storage.展开更多
Exploring superior electrocatalyst for hydrogen evolution reaction(HER)is an urgent need for hydrogen production based on water splitting.The redistribution of electrons and the increase of active sites through multi-...Exploring superior electrocatalyst for hydrogen evolution reaction(HER)is an urgent need for hydrogen production based on water splitting.The redistribution of electrons and the increase of active sites through multi-interface designing of electrocatalyst are powerful strategies to improve the catalytic efficiency.Herein,a three-phase interface structure of N,P co-doped carbon tube embedded with MoO_(2)/Mo_(2)C(MoO_(2)/Mo_(2)C-CT)was fabricated via a cooperative polymerizing-embedding and pyrolysis strategy.Work function and X-ray photoelectron spectroscopy(XPS)verified that the interfacial charge was quantificationally modulated,achieving an intrinsically enhanced charge transfer by an induced built-in electric field.Theoretical study of density functional theory(DFT)illustrated that triple-interface structure showed a lower energy for H*+H2O*than that of single-interface counterparts.The triple-interface MoO_(2)/Mo_(2)C-CT delivered a lower overpotential of 129 mV at 10 mA·cm^(−2)than that of either single-interface MoO_(2)-CT or Mo_(2)C-CT catalyst.This work may put forward an attractive approach for modulating electronic structure and provide insights into the understanding of triple-interface structure towards HER.展开更多
The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tu...The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tube(CT)grids(3D-CTGs)using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors(EDLCs),showing excellent frequency response performance.The unique design warrants fast ion migration channels,excellent electronic conductivity,and good structural stability.This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes,resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes,respectively.Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output.The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahighpower performance and open up new possibilities for applications requiring high-power output.展开更多
Carbon tubes were prepared by Ni (or Ti) catalytic pyrolysis of acetylene. The catalytic effect of nanometer nickel powders is related to the reduction temperature in H2 atmosphere. Nanometer nickel powders reduced at...Carbon tubes were prepared by Ni (or Ti) catalytic pyrolysis of acetylene. The catalytic effect of nanometer nickel powders is related to the reduction temperature in H2 atmosphere. Nanometer nickel powders reduced at high temperature have a distinguished catalytic effect, and the yield of the carbon tubes is relatively high; but for the nickel powders reduced at low temperature, the yield of carbon tubes is low, and no tube can be formed. Carbon tubes can only be grown along the edges or on the tips of the Ni (or Ti) sheets reduced at about 770C. But if Ni (or Ti) sheets are etched in acid, at lot of carbon tubes with various forms can be formed on their surface. The structure and morphology of the carbon tubes is studied, and the growth thermodynamics for the straight, curved and helical carbon tubes are systematically investigated for the first time.展开更多
Pyrogenic biomass carbon has been deemed a promising alternative to Pt/C for the oxygen reduction reaction(ORR) owing to its low cost, excellent activity, and eco-friendly properties. Herein, a porous carbon tube mate...Pyrogenic biomass carbon has been deemed a promising alternative to Pt/C for the oxygen reduction reaction(ORR) owing to its low cost, excellent activity, and eco-friendly properties. Herein, a porous carbon tube material derived from kapok fibres was prepared by combining activation with pyrolysis. Electrochemical measurements demonstrated that the kapok fibre-derived material prepared at 900°C had excellent ORR performance with a half-wave potential –0.14 V(vs. Ag/Ag Cl) close to that of commercial Pt/C(–0.13 V vs. Ag/Ag Cl) in 0.1 mol L–1 KOH. The prepared material also displayed remarkable methanol tolerance and durability. Furthermore, the maximum power density output of the microbial fuel cell using the prepared material was(801±40) mW m–2, comparable to that of the Pt/C cathode((778±31) mW m–2). The present work provides a facile way of using economical and renewable biomass to develop a porous structure and high-activity cathode ORR catalyst for fuel cell applications.展开更多
Amidst <span><span><span style="font-family:;" "="">the </span></span></span><span><span><span style="font-family:;" "="&...Amidst <span><span><span style="font-family:;" "="">the </span></span></span><span><span><span style="font-family:;" "="">COVID-19 pandemic, environmental problems such as ener<span>gy crisis, global warming, and contamination from pathogenic mi</span>cro-organisms <span>are still prevailed and strongly demanded progress in high</span></span></span></span><span><span><span style="font-family:;" "="">-</span></span></span><span><span><span style="font-family:;" "="">performance</span></span></span><span><span><span style="font-family:;" "=""> energy storing and anti-microbial materials. The nanocomposites are materials <span>that have earned large interest owing to their promising applications for</span> countering global issues related to sustainable energy and</span></span></span><span><span><span style="font-family:;" "=""> a</span></span></span><span><span><span style="font-family:;" "=""> flourishing environ<span>ment. Here, polypyrrole </span></span></span></span><span><span><span style="font-family:;" "="">coated</span></span></span><span><span><span style="font-family:;" "=""> hybrid nanocomposites of multi-walled</span></span></span><span><span><span style="font-family:;" "=""> carbon nanotube and cadmium sulfide quantum dots named MCP were synthe<span>sized using facile and low-cost <i>in-situ</i> oxidative polymerization method.</span> Cha<span>racterization techniques confirmed the synthesis. Electrochemical studies</span> showed that the nanocomposite <span>1-MCP<i> </i></span>showed an impressively higher super capacitance behavior in comparison to f-MWCNT, 7-MCP and 5-MCP. The improved performance of the nanocomposites was attributed mainly to the good conductivity of carbon nanotubes and polypyrrole, high surface area, and stability of the carbon nanotubes and the high electrocatalytic activity of the cadmium sulfide quantum dots. Owing to the synergistic effect of MWCNT, <span>CdS, and PPy the synthesized ternary nanocomposite also inhibited the</span> growth and multiplication of tested bacteria such as <i>S. aureus</i>, and <i>E. coli</i> completely within 24 h. On the whole, the assimilated nanocomposite MCP opens promising aspects for the development of upcoming energy storage devices and as<span style="color:red;"> </span></span></span></span><span><span><span style="font-family:;" "="">an </span></span></span><span><span><span style="font-family:;" "="">antibacterial agent.</span></span></span>展开更多
A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The ...A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The liquid crystal polymers (LCP) and melamine formaldehydes (MF) polymer are used to study the orientation effect of CNTs in various polymeric matrix.The influences of orientation,aspect ratio,and mass fraction of CNTs upon the shielding effectiveness (SE) of CNTs-composites are investigated.The higher the orientation,aspect ratio,and weight percentages of nano-materials are, the higher the SE of the carbon composites.The highest SE for the CNTs/LCP nano composite obtained is more than 62 dB. This results may lead to the developing for CPU IC chip packaging.展开更多
It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the res...It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the residual carbon amount, it has been reported that the inner surface of a copper tube can be dissolved with a mixed acid to collect and analyze the adhering carbon;however, this method is dangerous and difficult. Therefore, two methods were examined as a simple quantitative method for obtaining the residual carbon amount using copper tubes with known residual carbon amounts. One method utilizes X-ray photoelectron spectroscopy (XPS), and the other method utilizes the potential difference between the carbon film-adhered surface and carbon film-removed surface. In regard to XPS measurement, a linear correlation was found between the spectral intensity of C and the residual carbon amount;therefore, XPS measurements were considered to be effective as a simple measurement method for the carbon film on the inner surface of a copper tube. In the evaluation method by measuring the corrosion potential, a correlation was observed between the potential difference ΔE and the residual carbon amount of the inner surface of the tube and the outer surface of the polished tube. It is considered possible to estimate the residual carbon amount from the prepared calibration curve. Through these studies, it is suggested that the carbon film was non-uniformly present on the surface of the copper tube. Therefore, the galvanic current was measured, and the effect of a non-uniform carbon film on corrosion behavior was investigated. As a result, in the measurement of galvanic current, the current flowed from the copper tube with a large amount of residual carbon (cathode) to the copper tube with a small amount of residual carbon (anode). In addition, the higher the area ratio of the carbon film was, the larger the galvanic current tended to be.展开更多
A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost ...A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost the lithium storage performance of Fe3O4/N-doped carbon tubular structures.Poly pyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe3O4/N-doped carbon(N-C@Fe3O4@N-C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N-C@Fe3O4@N-C displays a high reversible discharge capacity of 675.8 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and very good rate capability(470 mA h g_1 at 2 A g-1),which significantly surpasses the performance of Fe3O4@N-C.TEM analysis reveals that after battery cycling the FeOx particles detached from the carbon fibers for Fe3O4@N-C,while for N-C@Fe3O4@N-C the FeOx particles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N-C@Fe3C)4@N-C is attributed to the synergistic effect between Fe3O4 and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs.展开更多
In ground tests of hypersonic scramjet, the highenthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characte...In ground tests of hypersonic scramjet, the highenthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characteristics of fuels between ground tests and real flights. In order to properly assess the influence of the contaminants on ignition characteristics of hydrocarbon fuels, the effect of water vapor and carbon dioxide on the ignition delay times of China RP-3 kerosene was studied behind reflected shock waves in a preheated shock tube. Experiments were conducted over a wider temperature range of 800-1 500 K, at a pressure of 0.3 MPa, equivalence ratios of 0.5 and 1, and oxygen concentration of 20%. Ignition delay times were determined from the onset of the excited radical OH emission together with the pressure profile. Ignition delay times were measured for four cases: (1) clean gas, (2) gas vitiated with 10% and 20% water vapor in mole, (3) gas vitiated with 10% carbon dioxide in mole, and (4) gas vitiated with 10% water vapor and 10% carbon dioxide, 20% water vapor and 10% carbon dioxide in mole. The results show that carbon dioxide produces an inhibiting effect at temperatures below 1 300 K when Ф = 0.5, whereas water vapor appears to accelerate the ignition process below a critical temperature of about 1 000 K when Ф = 0.5. When both water vapor and carbon dioxide exist together, a minor inhibiting effect is observed at Ф = 0.5, while no effect is found at Ф = 1.0. The results are also discussed preliminary by considering both the combustion reaction mechanism and the thermophysics properties of the fuel mixtures. The current measurements demonstrate vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of China RP-3 kerosene at air-like O2 concentration. It is important to account for such effects when data are extrapolated from ground testing to real flight conditions.展开更多
Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were ...Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were pyrolyzed in the temperature range of 550°C - 1050°C under H2, N2 and Ar gases. Taguchi Optimization technique was applied to find out the best operating conditions to get maximum yield of carbon nano material (CNM). For Taguchi op- timization, experimental set up was done in two different temperature ranges i.e. 550°C - 750°C and 850°C - 1050°C. CNMs synthesized were characterized by SEM, TEM, Micro Raman and XRD analysis. HDPE was found to yield maximum CNM. Its pyrolysis at 750°C under hydrogen atmosphere for 2h gave carbon nano beads and some carbon nano tubes. Whereas under same conditions at 1050°C more multi wall carbon nano tubes (MWCNT) were produced, with some carbon nano beads. XRD data confirmed the graphitic nature of carbon-nanotube. The intensities of G-band and D-band of Raman spectra suggested that CNM has more defect sites and spectra were similar for CNM obtained in both the temperature ranges. The TGA analysis of CNM obtained at 550°C - 750°C, indicated that they are not amor- phous carbon and CNM obtained at 850°C - 1050°C decomposed at 624°C - 668°C;suggesting that CNT synthesized at this temperature range were more crystalline than what was obtained at the 550°C - 750°C.展开更多
It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residua...It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added.展开更多
The investigations on the effect of the initial surface and microstructure on the seawater corrosion of Cu Ni alloy tubes were carried out by processing, electrochemical methods and natural seawater exposure as well a...The investigations on the effect of the initial surface and microstructure on the seawater corrosion of Cu Ni alloy tubes were carried out by processing, electrochemical methods and natural seawater exposure as well as SEM. Deformation had more impact on the final microstructure of the tubes than the annealing time did, and at the deformation of 32% and annealing temperature 550~600 ℃ for 1 h the tubes was completely recrystallized microstructure. As increasing the volume fraction of recrystallization, the homogeneity of microstructure and the corrosion resistance increased. The residual carbon film produced on the inner surface of the tubes during the processing, had higher corrosion potential than the alloy substrate and good electronic conductivity, so accelerating the dissolution of the substrate in seawater, and the non protective and loose corrosion product film formed. Immersed in natural seawater, the tubes of incomplete recrystallization, consisting of deformed and recrystallized grains, displayed intergranular corrosion, which resulted from corrosion micro cells built between deformed and recrystallized grains and the preferable transportation of electrons on the boundaries of both the grains. In contrast, the recrystallized alloy tubes formed the uniform and compact corrosion product film under which no corrosion was found.展开更多
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
基金supported by the Natural Science Foundation of China(91963202 and 52072372)the Key Research Program of Frontier Sciences(CAS,Grant,QYZDJ-SSW-SLH046)the CAS/SAFEA International Partnership Program for Creative Research Teams,and the Hefei Institutes of Physical Science,Chinese Academy of Sciences Director’s Fund(YZJ ZX202018)
文摘Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries(LIBs)due to their ultrahigh theoretical capacity and low cost,but are restricted by their low conductivity and large volume expansion during Li^(+)intercalation.Herein,we designed and constructed a structurally integrated 3D carbon tube(3D-CT)grid film with Mn_(3)O_(4)nanoparticles(Mn_(3)O_(4)-NPs)and carbon nanotubes(CNTs)filled in the inner cavity of CTs(denoted as Mn_(3)O_(4)-NPs/CNTs@3D-CT)as high-performance free-standing anode for LIBs.The Mn_(3)O_(4)-NPs/CNTs@3D-CT grid with Mn_(3)O_(4)-NPs filled in the inner cavity of 3D-CT not only afford sufficient space to overcome the damage caused by the volume expansion of Mn_(3)O_(4)-NPs during charge and discharge processes,but also achieves highly efficient channels for the fast transport of both electrons and Li+during cycling,thus offering outstanding electrochemical performance(865 mAh g^(-1)at 1 A g^(-1)after 300 cycles)and excellent rate capability(418 mAh g^(-1)at 4 A g^(-1))based on the total mass of electrode.The unique 3D-CT framework structure would open up a new route to the highly stable,high-capacity,and excellent cycle and high-rate performance free-standing electrodes for highperformance Li-ion storage.
基金support by the Fundamental Research Funds for the Central Universities(No.22120220058)athe Instrumental Analysis Fund of Tongji University(No.2022GX072).
文摘Exploring superior electrocatalyst for hydrogen evolution reaction(HER)is an urgent need for hydrogen production based on water splitting.The redistribution of electrons and the increase of active sites through multi-interface designing of electrocatalyst are powerful strategies to improve the catalytic efficiency.Herein,a three-phase interface structure of N,P co-doped carbon tube embedded with MoO_(2)/Mo_(2)C(MoO_(2)/Mo_(2)C-CT)was fabricated via a cooperative polymerizing-embedding and pyrolysis strategy.Work function and X-ray photoelectron spectroscopy(XPS)verified that the interfacial charge was quantificationally modulated,achieving an intrinsically enhanced charge transfer by an induced built-in electric field.Theoretical study of density functional theory(DFT)illustrated that triple-interface structure showed a lower energy for H*+H2O*than that of single-interface counterparts.The triple-interface MoO_(2)/Mo_(2)C-CT delivered a lower overpotential of 129 mV at 10 mA·cm^(−2)than that of either single-interface MoO_(2)-CT or Mo_(2)C-CT catalyst.This work may put forward an attractive approach for modulating electronic structure and provide insights into the understanding of triple-interface structure towards HER.
基金supported by the National Natural Science Foundation of China(Nos.91963202,52072372,and 52232007).
文摘The rational design of electrodes is the key to achieving ultrahigh-power performance in electrochemical energy storage devices.Recently,we have constructed well-organized and integrated three-dimensional(3D)carbon tube(CT)grids(3D-CTGs)using a 3D porous anodic aluminum oxide template-assisted method as electrodes of electrical double-layer capacitors(EDLCs),showing excellent frequency response performance.The unique design warrants fast ion migration channels,excellent electronic conductivity,and good structural stability.This study achieved one of the highest carbon-based ultrahigh-power EDLCs with the 3D-CTG electrodes,resulting in ultrahigh power of 437 and 1708 W·cm−3 with aqueous and organic electrolytes,respectively.Capacitors constructed with these electrodes would have important application prospects in the ultrahigh-power output.The rational design and fabrication of the 3D-CTGs electrodes have demonstrated their capability to build capacitors with ultrahighpower performance and open up new possibilities for applications requiring high-power output.
基金supported by the National Natural Science Foundations of China.
文摘Carbon tubes were prepared by Ni (or Ti) catalytic pyrolysis of acetylene. The catalytic effect of nanometer nickel powders is related to the reduction temperature in H2 atmosphere. Nanometer nickel powders reduced at high temperature have a distinguished catalytic effect, and the yield of the carbon tubes is relatively high; but for the nickel powders reduced at low temperature, the yield of carbon tubes is low, and no tube can be formed. Carbon tubes can only be grown along the edges or on the tips of the Ni (or Ti) sheets reduced at about 770C. But if Ni (or Ti) sheets are etched in acid, at lot of carbon tubes with various forms can be formed on their surface. The structure and morphology of the carbon tubes is studied, and the growth thermodynamics for the straight, curved and helical carbon tubes are systematically investigated for the first time.
基金supported by the Postdoctoral Fund of China(Grant No.2017M622042)the Fujian Provincial Department of Science and Technology of China(Grant No.2017N0007)+1 种基金the National Natural Science Foundation of China(Grant No.41601241)the Key Research&Developement Plan of Fujian Province(Grant No.2017NZ0001-1)
文摘Pyrogenic biomass carbon has been deemed a promising alternative to Pt/C for the oxygen reduction reaction(ORR) owing to its low cost, excellent activity, and eco-friendly properties. Herein, a porous carbon tube material derived from kapok fibres was prepared by combining activation with pyrolysis. Electrochemical measurements demonstrated that the kapok fibre-derived material prepared at 900°C had excellent ORR performance with a half-wave potential –0.14 V(vs. Ag/Ag Cl) close to that of commercial Pt/C(–0.13 V vs. Ag/Ag Cl) in 0.1 mol L–1 KOH. The prepared material also displayed remarkable methanol tolerance and durability. Furthermore, the maximum power density output of the microbial fuel cell using the prepared material was(801±40) mW m–2, comparable to that of the Pt/C cathode((778±31) mW m–2). The present work provides a facile way of using economical and renewable biomass to develop a porous structure and high-activity cathode ORR catalyst for fuel cell applications.
文摘Amidst <span><span><span style="font-family:;" "="">the </span></span></span><span><span><span style="font-family:;" "="">COVID-19 pandemic, environmental problems such as ener<span>gy crisis, global warming, and contamination from pathogenic mi</span>cro-organisms <span>are still prevailed and strongly demanded progress in high</span></span></span></span><span><span><span style="font-family:;" "="">-</span></span></span><span><span><span style="font-family:;" "="">performance</span></span></span><span><span><span style="font-family:;" "=""> energy storing and anti-microbial materials. The nanocomposites are materials <span>that have earned large interest owing to their promising applications for</span> countering global issues related to sustainable energy and</span></span></span><span><span><span style="font-family:;" "=""> a</span></span></span><span><span><span style="font-family:;" "=""> flourishing environ<span>ment. Here, polypyrrole </span></span></span></span><span><span><span style="font-family:;" "="">coated</span></span></span><span><span><span style="font-family:;" "=""> hybrid nanocomposites of multi-walled</span></span></span><span><span><span style="font-family:;" "=""> carbon nanotube and cadmium sulfide quantum dots named MCP were synthe<span>sized using facile and low-cost <i>in-situ</i> oxidative polymerization method.</span> Cha<span>racterization techniques confirmed the synthesis. Electrochemical studies</span> showed that the nanocomposite <span>1-MCP<i> </i></span>showed an impressively higher super capacitance behavior in comparison to f-MWCNT, 7-MCP and 5-MCP. The improved performance of the nanocomposites was attributed mainly to the good conductivity of carbon nanotubes and polypyrrole, high surface area, and stability of the carbon nanotubes and the high electrocatalytic activity of the cadmium sulfide quantum dots. Owing to the synergistic effect of MWCNT, <span>CdS, and PPy the synthesized ternary nanocomposite also inhibited the</span> growth and multiplication of tested bacteria such as <i>S. aureus</i>, and <i>E. coli</i> completely within 24 h. On the whole, the assimilated nanocomposite MCP opens promising aspects for the development of upcoming energy storage devices and as<span style="color:red;"> </span></span></span></span><span><span><span style="font-family:;" "="">an </span></span></span><span><span><span style="font-family:;" "="">antibacterial agent.</span></span></span>
文摘A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The liquid crystal polymers (LCP) and melamine formaldehydes (MF) polymer are used to study the orientation effect of CNTs in various polymeric matrix.The influences of orientation,aspect ratio,and mass fraction of CNTs upon the shielding effectiveness (SE) of CNTs-composites are investigated.The higher the orientation,aspect ratio,and weight percentages of nano-materials are, the higher the SE of the carbon composites.The highest SE for the CNTs/LCP nano composite obtained is more than 62 dB. This results may lead to the developing for CPU IC chip packaging.
文摘It has been reported that pitting corrosion in copper tubes occurs due to the effect of a carbon film produced by the influence of undergoing an oil and heat treatment. As a quantitative method for determining the residual carbon amount, it has been reported that the inner surface of a copper tube can be dissolved with a mixed acid to collect and analyze the adhering carbon;however, this method is dangerous and difficult. Therefore, two methods were examined as a simple quantitative method for obtaining the residual carbon amount using copper tubes with known residual carbon amounts. One method utilizes X-ray photoelectron spectroscopy (XPS), and the other method utilizes the potential difference between the carbon film-adhered surface and carbon film-removed surface. In regard to XPS measurement, a linear correlation was found between the spectral intensity of C and the residual carbon amount;therefore, XPS measurements were considered to be effective as a simple measurement method for the carbon film on the inner surface of a copper tube. In the evaluation method by measuring the corrosion potential, a correlation was observed between the potential difference ΔE and the residual carbon amount of the inner surface of the tube and the outer surface of the polished tube. It is considered possible to estimate the residual carbon amount from the prepared calibration curve. Through these studies, it is suggested that the carbon film was non-uniformly present on the surface of the copper tube. Therefore, the galvanic current was measured, and the effect of a non-uniform carbon film on corrosion behavior was investigated. As a result, in the measurement of galvanic current, the current flowed from the copper tube with a large amount of residual carbon (cathode) to the copper tube with a small amount of residual carbon (anode). In addition, the higher the area ratio of the carbon film was, the larger the galvanic current tended to be.
基金financially supported by the National Natural Science Foundation of China (Nos. 21601098 and 51602167)Shandong Provincial Science Foundation (ZR2016EMB07 and ZR2017JL021)+1 种基金Key Research and Development Program (2018GGX102033)Qingdao Applied Fundamental Research Project (16-5-1-92-jch and 17-1-1-81-jch)
文摘A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost the lithium storage performance of Fe3O4/N-doped carbon tubular structures.Poly pyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe3O4/N-doped carbon(N-C@Fe3O4@N-C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N-C@Fe3O4@N-C displays a high reversible discharge capacity of 675.8 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and very good rate capability(470 mA h g_1 at 2 A g-1),which significantly surpasses the performance of Fe3O4@N-C.TEM analysis reveals that after battery cycling the FeOx particles detached from the carbon fibers for Fe3O4@N-C,while for N-C@Fe3O4@N-C the FeOx particles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N-C@Fe3C)4@N-C is attributed to the synergistic effect between Fe3O4 and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs.
基金supported by the National Natural Science Foundation of China(90916017)
文摘In ground tests of hypersonic scramjet, the highenthalpy airstream produced by burning hydrocarbon fuels often contains contaminants of water vapor and carbon dioxide. The contaminants may change the ignition characteristics of fuels between ground tests and real flights. In order to properly assess the influence of the contaminants on ignition characteristics of hydrocarbon fuels, the effect of water vapor and carbon dioxide on the ignition delay times of China RP-3 kerosene was studied behind reflected shock waves in a preheated shock tube. Experiments were conducted over a wider temperature range of 800-1 500 K, at a pressure of 0.3 MPa, equivalence ratios of 0.5 and 1, and oxygen concentration of 20%. Ignition delay times were determined from the onset of the excited radical OH emission together with the pressure profile. Ignition delay times were measured for four cases: (1) clean gas, (2) gas vitiated with 10% and 20% water vapor in mole, (3) gas vitiated with 10% carbon dioxide in mole, and (4) gas vitiated with 10% water vapor and 10% carbon dioxide, 20% water vapor and 10% carbon dioxide in mole. The results show that carbon dioxide produces an inhibiting effect at temperatures below 1 300 K when Ф = 0.5, whereas water vapor appears to accelerate the ignition process below a critical temperature of about 1 000 K when Ф = 0.5. When both water vapor and carbon dioxide exist together, a minor inhibiting effect is observed at Ф = 0.5, while no effect is found at Ф = 1.0. The results are also discussed preliminary by considering both the combustion reaction mechanism and the thermophysics properties of the fuel mixtures. The current measurements demonstrate vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of China RP-3 kerosene at air-like O2 concentration. It is important to account for such effects when data are extrapolated from ground testing to real flight conditions.
文摘Three different types of Polyethylene family, High Density Polyethylene, (HDPE), Low Density polyethylene (LDPE) and Linear Low Density polyethylene (LLDPE) polymers having different molecular weight and density;were pyrolyzed in the temperature range of 550°C - 1050°C under H2, N2 and Ar gases. Taguchi Optimization technique was applied to find out the best operating conditions to get maximum yield of carbon nano material (CNM). For Taguchi op- timization, experimental set up was done in two different temperature ranges i.e. 550°C - 750°C and 850°C - 1050°C. CNMs synthesized were characterized by SEM, TEM, Micro Raman and XRD analysis. HDPE was found to yield maximum CNM. Its pyrolysis at 750°C under hydrogen atmosphere for 2h gave carbon nano beads and some carbon nano tubes. Whereas under same conditions at 1050°C more multi wall carbon nano tubes (MWCNT) were produced, with some carbon nano beads. XRD data confirmed the graphitic nature of carbon-nanotube. The intensities of G-band and D-band of Raman spectra suggested that CNM has more defect sites and spectra were similar for CNM obtained in both the temperature ranges. The TGA analysis of CNM obtained at 550°C - 750°C, indicated that they are not amor- phous carbon and CNM obtained at 850°C - 1050°C decomposed at 624°C - 668°C;suggesting that CNT synthesized at this temperature range were more crystalline than what was obtained at the 550°C - 750°C.
文摘It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added.
文摘The investigations on the effect of the initial surface and microstructure on the seawater corrosion of Cu Ni alloy tubes were carried out by processing, electrochemical methods and natural seawater exposure as well as SEM. Deformation had more impact on the final microstructure of the tubes than the annealing time did, and at the deformation of 32% and annealing temperature 550~600 ℃ for 1 h the tubes was completely recrystallized microstructure. As increasing the volume fraction of recrystallization, the homogeneity of microstructure and the corrosion resistance increased. The residual carbon film produced on the inner surface of the tubes during the processing, had higher corrosion potential than the alloy substrate and good electronic conductivity, so accelerating the dissolution of the substrate in seawater, and the non protective and loose corrosion product film formed. Immersed in natural seawater, the tubes of incomplete recrystallization, consisting of deformed and recrystallized grains, displayed intergranular corrosion, which resulted from corrosion micro cells built between deformed and recrystallized grains and the preferable transportation of electrons on the boundaries of both the grains. In contrast, the recrystallized alloy tubes formed the uniform and compact corrosion product film under which no corrosion was found.