期刊文献+
共找到133篇文章
< 1 2 7 >
每页显示 20 50 100
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
1
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system carbon nitrogen phosphorus tea quality path analysis
下载PDF
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
2
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) carbon(C) nitrogen(N) phosphorus(P) Pinus koraiensis
下载PDF
A brief introduction to recent applications of several sediment-analysis techniques in palaeolimnological studies-dry bulk density and water content, mineral magnetism, carbonate content, and content of total organic carbon,nitrogen content and carbon/ni 被引量:2
3
作者 WANG Hong-ya (Dept. of Urban and Environmental Sciences, Peking University, Beijing 100871, China Geophysical Laboratory, Dot. of Earth Sciences, University of Aarhus, Finlandsgade 8. DK- 8200, Aarhus N, Denmark) 《Journal of Geographical Sciences》 SCIE CSCD 2000年第1期28-36,共9页
Determination of dry bulk density and water content measurement of magnetic susceptibility (x) and saturation isothermal remanent magnetization (SIRM), determination of carbonate content, and determination of total o... Determination of dry bulk density and water content measurement of magnetic susceptibility (x) and saturation isothermal remanent magnetization (SIRM), determination of carbonate content, and determination of total organic carbon (TOC) content nitrogen content (N%) and carbon/nitrogen (C/N) ratio are some of the techniques which have been widely applied to lacustrine-sediment analyses. The techniques,complemented by others, are usually useful for revealing characteristics of lacustrine-sediments and thus for postulating hydrological regimes in the lake and environmental conditions and human activity around it in palaeolimnological studies. A very brief review is presented on recent applications of these techniques in palaeolimnological work with English literatures published mainly since 1985 and focus given on interpretations of results of these analyses related to palaeoenvironmental reconstructions. Low dry bulk density and high water content often imply relatively warm and wet conditions. High X and SIRM are usually resulted from reduced dilutions in the lake and intensified erosions on its catchment. both of which can be in turn attributed to environmental changes. While variations in patterns of X and SIRM may give further insight on mineral magnetism and thus implications on environmental conditions. Increased carbonate content seems likely to associate to warm and dry conditions.Increased TOC content is virtually used as one of indicators of warm and wet conditions and variations in C/N ratio may hint variations in relative contributions of different sources, aquatic and terrestrial, to the total organic matter in lake sediments and hence to lake-level fluctuations and climate changes. 展开更多
关键词 dry bulk density and water content mineral magnetism carbonate content. total organic carbon content nitrogen content carbon/nitrogen ratio
下载PDF
Smart Interfacing between Co-Fe Layered Double Hydroxide and Graphitic Carbon Nitride for High-efficiency Electrocatalytic Nitrogen Reduction
4
作者 Xiaohui Wu Lu Tang +5 位作者 Yang Si Chunlan Ma Peng Zhang Jianyong Yu Yitao Liu Bin Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期62-69,共8页
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction... Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction. 展开更多
关键词 density functional theory electrocatalytic nitrogen reduction graphitic carbon nitride interface engineering layered double hydroxide
下载PDF
Carbon,nitrogen and phosphorus stoichiometry in Pinus tabulaeformis forest ecosystems in warm temperate Shanxi Province,north China 被引量:7
5
作者 Ning Wang Fengzhen Fu +1 位作者 Baitian Wang Ruijun Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第6期1665-1673,共9页
Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the recipr... Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued. 展开更多
关键词 Pinus tabulaeformis Carr. Forest ecosystem Content of carbon nitrogen and phosphorus Ecological stoichiometry Warm temperate zone China
下载PDF
Carbon,nitrogen and phosphorus coupling relationships and their influencing factors in the critical zone of Dongting Lake wetlands,China
6
作者 Yan-hao Wu Nian-qing Zhou +2 位作者 Zi-jun Wu Shuai-shuai Lu Yi Cai 《Journal of Groundwater Science and Engineering》 2022年第3期250-266,共17页
Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling me... Wetland is a transition zone between terrestrial and aquatic ecosystems,and is the source and sink of various biogenic elements in the earth’s epipelagic zone.In order to investigate the driving force and coupling mechanism of carbon(C),nitrogen(N)and phosphorus(P)migration in the critical zone of lake wetland,this paper studies the natural wetland of Dongting Lake area,through measuring and analysing the C,N and P contents in the wetland soil and groundwater.Methods of Pearson correlation,non-linear regression and machine learning were employed to analyse the influencing factors,and to explore the coupling patterns of the C,N and P in both soils and groundwater,with data derived from soil and water samples collected from the wetland critical zone.The results show that the mean values of organic carbon(TOC),total nitrogen(TN)and total phosphorus(TP)in groundwater are 1.59 mg/L,4.19 mg/L and 0.5 mg/L,respectively,while the mean values of C,N and P in the soils are 18.05 g/kg,0.86 g/kg and 0.52 g/kg.The results also show that the TOC,TN and TP in the groundwater are driven by a variety of environmental factors.However,the concentrations of C,N and P in the soils are mainly related to vegetation abundance and species which influence each other.In addition,the fitted curves of wetland soil C-N and C-P appear to follow the power function and S-shaped curve,respectively.In order to establish a multivariate regression model,the soil N and P contents were used as the input parameters and the soil C content used as the output one.By comparing the prediction effects of machine learning and nonlinear regression modelling,the results show that coupled relationship equation for the C,N and P contents is highly reliable.Future modelling of the coupled soil and groundwater elemental cycles needs to consider the complexity of hydrogeological conditions and to explore the quantitative relationships among the influencing factors and chemical constituents. 展开更多
关键词 Dongting Lake Wetland critical zone carbon nitrogen and phosphorus Driving factors Coupling mechanisms
下载PDF
Cu_(3)P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage 被引量:3
7
作者 Yuanxing Yun Baojuan Xi +5 位作者 Yu Gu Fang Tian Weihua Chen Jinkui Feng Yitai Qian Shenglin Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期339-347,I0009,共10页
Immobilizing primary electroactive nanomaterials in porous carbon matrix is an effective approach for boosting the electrochemical performance of potassium-ion batteries (PIBs) because of the synergy among functional ... Immobilizing primary electroactive nanomaterials in porous carbon matrix is an effective approach for boosting the electrochemical performance of potassium-ion batteries (PIBs) because of the synergy among functional components. Herein, an integrated hybrid architecture composed of ultrathin Cu_(3)P nanoparticles (~20 nm) confined in porous carbon nanosheets (Cu_(3)P⊂NPCSs) as a new anode material for PIBs is synthesized through a rational self-designed self-templating strategy. Benefiting from the unique structural advantages including more active heterointerfacial sites, intimate and stable electrical contact, effectively relieved volume change, and rapid K^(+) ion migration, the Cu_(3)P⊂NPCSs indicate excellent potassium-storage performance involving high reversible capacity, exceptional rate capability, and cycling stability. Moreover, the strong adsorption of K^(+) ions and fast potassium-ion reaction kinetics in Cu_(3)P⊂NPCSs is verified by the theoretical calculation investigation. Noted, the intercalation mechanism of Cu_(3)P to store potassium ions is, for the first time, clearly confirmed during the electrochemical process by a series of advanced characterization techniques. 展开更多
关键词 Cu_(3)P Potassium-ion batteries nitrogen/phosphorus dual-doped porous carbon sheets Intercalation mechanism Heterointerface
下载PDF
Changes in soil organic carbon,nitrogen and sulphur along a slope gradient in apple orchard soils of Kashmir Himalaya
8
作者 Javaid M DAD Lotfollah ABDOLLAHI 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2377-2387,共11页
Accumulation and losses of soil organic carbon(SOC),total nitrogen(TN)and sulphur(S)influence food security and global warming.Therefore,their spatial distribution and variability at regional scale,and their relation ... Accumulation and losses of soil organic carbon(SOC),total nitrogen(TN)and sulphur(S)influence food security and global warming.Therefore,their spatial distribution and variability at regional scale,and their relation to topographical variables are of great interest.In this study,the variability of SOC,TN and S content was evaluated in apple orchard soils of Kashmir region,at three depths(D1:0-10,D2:10-20,and D3:20-30 cm)on slope gradient i.e.:flat,medium,and high.With an increase in slope,a significant decrease of SOC and TN was observed,with concentration of SOC and TN recorded highest(14.3±2.06 g kg-1&0.97±0.35 g kg-1)in flat slope orchards and lowest(9.6±2.07 g kg-1&0.84±0.41 g kg-1)in high slope orchards.On stock basis,the values recorded for flat,medium,and high slope orchards,for SOC and TN were 54.62±4.24 Mg ha-1&0.38±0.06 Mg ha-1,44.13±5.11 Mg ha-1&0.32±0.09 Mg ha-1,and 38.73±5.94 Mg ha-1&0.28±0.10,respectively.The differences for S concentration and stocks were modest,with flat(0.21±0.15 mg kg-1&0.09±0.0.003 Mg ha-1)>high(0.16±0.07 mg kg-1&0.06±0.007 Mg ha-1)>medium(0.12±0.04 mg kg-1&0.075±0.009 Mg ha-1).Across slopes,SOC,TN and S decreased with increasing soil depth,suggesting clear downward trend.Overall,SOC and TN increased with the increase of altitude,precipitation and clay content while its relationship with soil acidity and soil bulk density was negative.The findings may provide scientific basis to structure agricultural development plans or prioritize regions for soil conservation efforts. 展开更多
关键词 Apple orchards SLOPE Soil organic carbon SULPHUR Total nitrogen Soil bulk density
下载PDF
Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation 被引量:17
9
作者 Cheng-Zhi Ke Fang Liu +6 位作者 Zhi-Ming Zheng He-He Zhang Meng-Ting Cai Miao Li Qi-Zhang Yan Hui-Xin Chen Qiao-Bao Zhang 《Rare Metals》 SCIE EI CAS CSCD 2021年第6期1347-1356,共10页
Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs),but it suffers from poor electronic conductivity and dramatic volume variation during cycling,which poses a critical challenge ... Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs),but it suffers from poor electronic conductivity and dramatic volume variation during cycling,which poses a critical challenge for stable battery operation.To mitigate these issues simultaneously,we propose a"double carbon synergistic encapsulation"strategy,namely thin carbon shell and nitrogen/phosphorus co-doped two-dimensional(2D)carbon sheet dual encapsulate Si nanoparticles(denoted as 2D NPC/C@Si).This double carbon structure can serve as a conductive medium and buffer matrix to accommodate the volume expansion of Si nanoparticles and enable fast electron/ion transport,which promotes the formation of a stable solid electrolyte interphase film during cycling.Through structural advantages,the resulting 2 D NPC/C@Si electrode demonstrates a high reversible capacity of592 mAh·g^(-1) at 0.2 A·g^(-1) with 90.5%excellent capacity retention after 100 cycles,outstanding rate capability(148 mAh·g^(-1) at 8 A·g^(-1)),and superior long-term cycling stability(326 mAh·g^(-1) at 1 A·g^(-1) for 500 cycles,86%capacity retention).Our findings elucidate the development of high-performance Si@C composite anodes for advanced LTBs. 展开更多
关键词 Silicon@carbon composites Anode nitrogen/phosphorus co-doped carbon Lithium-ion battery
原文传递
Phosphorus/nitrogen co-doped hollow carbon fibers enabling high-rate potassium storage 被引量:2
10
作者 Yu Zhou Shuang Tian +6 位作者 Min-Yu Jia Pei-Bo Gao Guang-Chao Yin Xiao-Mei Wang Jing-Lin Mu Jin Zhou Tong Zhou 《Rare Metals》 SCIE EI CAS CSCD 2023年第8期2622-2632,共11页
Potassium-ion hybrid capacitors(PIHCs)reconcile the advantages of batteries and supercapacitors,exhibiting both good energy density and high-power density.However,the low-rate performance and poor cycle stability of b... Potassium-ion hybrid capacitors(PIHCs)reconcile the advantages of batteries and supercapacitors,exhibiting both good energy density and high-power density.However,the low-rate performance and poor cycle stability of battery-type anodes hinder their practical application.Herein,phosphorus/nitrogen co-doped hollow carbon fibers(P-HCNFs)are prepared by a facile template method.The stable grape-like structure with continuous and interconnected cavity structure is an ideal scaffold for shortening the ion transport and relieving volume expansion,while the introduction of P atoms and intrinsic N atoms can create abundant extrinsic/intrinsic defects and additional active sites,reducing the K+diffusion barrier and improving the capacitive-controlled capacity.The P-HCNFs delivers a high specific capacity of 310 mAh·g^(-1)at 0.1 A·g^(-1)with remarkable ultra-high-rate performance(140 mAh·g^(-1)at 50 A·g^(-1))and retains an impressive capacity retention of 87%after 10,000 cycles at 10 A·g^(-1).As expected,the as-assembled PIHCs present a high energy density(115.8 Wh·kg^(-1)at 378.0 W·kg^(-1))and excellent capacity retention of 91%after 20,000 cycles.This work not only shows great potential for utilizing heteroatom-doping and structural design strategies to boost potassium storage,but also paves the way for advancing the practicality of high-energy PIHCs devices. 展开更多
关键词 Potassium-ion hybrid capacitors(PIHCs) Hollow carbon anodes phosphorus/nitrogen cooping High-rate performance
原文传递
Soil organic carbon and nitrogen content of density fractions and effect of meadow degradation to soil carbon and nitrogen of fractions in alpine Kobresia meadow 被引量:11
11
作者 WANG WenYing WANG QiJi LU ZiYu 《Science China Earth Sciences》 SCIE EI CAS 2009年第5期660-668,共9页
This research was conducted on the non-disturbed native alpine Kobresia meadow(YF) and the severely degraded meadow(SDL) of Dari County of Qinghai Province.By a density fractionation approach,each soil sample was divi... This research was conducted on the non-disturbed native alpine Kobresia meadow(YF) and the severely degraded meadow(SDL) of Dari County of Qinghai Province.By a density fractionation approach,each soil sample was divided into two fractions:light fraction(LF) and heavy fraction(HF).The obtained fractions were analyzed for organic carbon(OC) and nitrogen(N) concentrations.The results showed:(1) the OC concentration in HF and LF was 3.84% and 28.63% respectively while the nitrogen concentration in HF and LF was 0.362% and 1.192% respectively in 0-10 cm depth.C:N ratio was 10.6 in HF and 23.8 in LF respectively.(2) As far as the ratio of OC in given fraction to that in gross sample was concerned,dominance of OC in HF was obvious in the whole soil profile.OC in HF increased from 78.95% to 90.33%,while OC in LF decreased from 21.05% to 9.68% with depths.(3) Soil total OC amounted to 47.47 in YF while 17.63 g.kg-1 in SDL,in which the OC content in HF decreased from 37.31 to 16.01 g.kg-1 while OC content in LF decreased from 10.01 to 1.62 g.kg-1.In other words,results of OC and N content show meadow degradation led to the loss of 57% OC in HF and 84% OC in LF from originally native ecosystem on alpine meadow.In addition,meadow degradation led to the loss of 43% N in HF and 79% N in LF from originally native ecosystem on alpine meadow.(4) The main reason for loss of C and N in LF during meadow degradation was not attributed to the decrease of OC and N concentration in LF and LF,but to the decrease in LF dry weight.Loss of N was far lower than loss of C in HF.This may suggest that there is difference in protection mode of C and N in HF. 展开更多
关键词 alpine Kobresia MEADOW density fraction SOIL organic carbon SOIL nitrogen MEADOW DEGRADATION
原文传递
Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium–sulfur batteries 被引量:12
12
作者 Juan Ren Yibei Zhou +3 位作者 Huali Wu Fengyu Xie Chenggang Xu Dunmin Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期121-131,共11页
Biomass-derived carbon materials have aroused widespread concern as host material of sulfur to enhance electrochemical performances for lithium–sulfur batteries. Herein, goat hair, as a low-cost and eco-friendly prec... Biomass-derived carbon materials have aroused widespread concern as host material of sulfur to enhance electrochemical performances for lithium–sulfur batteries. Herein, goat hair, as a low-cost and eco-friendly precursor, is employed to fabricate cauliflower-like in-situ nitrogen, oxygen and phosphorus tri-doped porous biomass carbon(NOPC) by a facile activation with H_3PO_4 and carbonization process.The morphology and microstructure of NOPC can be readily tuned by altering pyrolysis temperature. The as-prepared NOPC matrix material carbonized at 600 °C possesses 3D hierarchical porous structure, high specific surface area(535.352 m^2 g^(-1)), and appropriate pore size and pore size distribution. Encapsulating sulfur into the NOPC depends on a stem-melting technology as cathode materials of Li–S batteries. Due to the synergistic effect of special physical structure and inherent tri-doping of N, O and P, electrons and ions transfer and utilization of active sulfur in the materials are improved, and the shuttle behaviors of soluble lithium polysulfides are also mitigated. Consequently, the S/NOPC-600 composite exhibits excellent electrochemical performance, giving a high initial discharge capacity of 1185 mA h g^(-1) at 0.05 C and maintaining a relatively considerable capacity of 489 m A h g^(-1) at 0.2 C after 300 cycles. Our work shows that a promising candidate for cathode material of Li–S batteries can be synthesized using low-cost and renewable biomass materials by a facile process. 展开更多
关键词 Biomass-derived carbon materials GOAT HAIR nitrogen Oxygen and phosphorus tri-doping LITHIUM SULFUR BATTERIES
下载PDF
Nitrogen-,phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution 被引量:11
13
作者 Xia-Xia Li Pei-Yao Zhu +3 位作者 Qing Li Yu-Xia Xu Yan Zhao Huan Pang 《Rare Metals》 SCIE EI CAS CSCD 2020年第6期680-687,共8页
Here,N-and P-doped carbon-carbon nanotube CoP(NPC-CNTs-CoP)nanoparticles dodecahedra are achieved by multistep calcination of the Zn-doped zeolitic imidazolate framework ZIF-67 precursor(ZnCo-ZIF).In the structures,th... Here,N-and P-doped carbon-carbon nanotube CoP(NPC-CNTs-CoP)nanoparticles dodecahedra are achieved by multistep calcination of the Zn-doped zeolitic imidazolate framework ZIF-67 precursor(ZnCo-ZIF).In the structures,the presence of N and P atoms,abundant CNTs and the CoP nanoparticles can enhance electrochemical activity and promote the structural stability of materials.As the temperature increases,the Zn contents gradually reduce to zero,which provides more active sites for electrochemical testing.Furthermore,the high specific surface area and microporous behavior of NPC-CNTsCoP-9 make it excellent in electrocatalytic testing.NPCCNTs-CoP-9 shows a low overpotential of 224 mV at10 mA·cm^-2 in 1.0 mol·L^-1 KOH solution.The strategy of zeolitic imidazole framework-derived transition metal phosphides will provide a new sight for developing energy conversion materials. 展开更多
关键词 nitrogen phosphorus carbon carbon nanotube COP Oxygen evolution
原文传递
Wide emission shifts and high quantum yields of solvatochromic carbon dots with rich pyrrolic nitrogen 被引量:5
14
作者 Hua Wang Philip Haydel +3 位作者 Ning Sui Lina Wang Yan Liang William W.Yu 《Nano Research》 SCIE EI CAS CSCD 2020年第9期2492-2499,共8页
Carbon dots(CDs)with solvatochromic emission colors in different solvents have attracted much attention as a new class of luminescent nanomaterial owing to their facile synthesis and low production cost.In this work,w... Carbon dots(CDs)with solvatochromic emission colors in different solvents have attracted much attention as a new class of luminescent nanomaterial owing to their facile synthesis and low production cost.In this work,we prepared two kinds of CDs with solvatochromic emissions:green emission CDs(G-CDs)and multicolor emission CDs(M-CDs).G-CDs synthesized from o-phenylenediamine exhibited weak photoluminescence emission(quantum yield 2.8%-6.1%)and 39 nm solvatochromic shifts(492-531 nm).In contrast,M-CDs prepared from o-phenylenediamine and 4-aminophenol showed 87 nm solvatochromic shift range(505-592 nm)and much higher photoluminescence quantum yield(18.4%-32.5%).The two CDs exhibited different emission,absorption,and photoluminescence lifetime.The origin of solvatochromic shifts and the formation mechanism of CDs were demonstrated by analyzing the structures and compositions of two CDs.High percentages of pyrrolic nitrogen and amino nitrogen make wider solvatochromic shifts and higher quantum yields.The results were well supported by density functional theory calculations.This effective strategy to expand solvatochromic shift range and improve quantum yields could open a new window to prepare satisfied solvatochromic carbon dots. 展开更多
关键词 carbon dot SOLVATOCHROMISM density functional theory(DFT)calculation quantum yield pyrrolic nitrogen
原文传递
Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction
15
作者 Yanyang Qin Yan Li +3 位作者 Wenshan Zhao Shenghua Chen Tiantian Wu Yaqiong Su 《Nano Research》 SCIE EI CSCD 2023年第1期325-333,共9页
Developing efficient and stable catalysts for the electrocatalytic N_(2)reduction reaction(NRR)shows promise in nitrogen fixation.Here,we proposed active and stable single-atom catalysts(SACs)toward NRR,where transiti... Developing efficient and stable catalysts for the electrocatalytic N_(2)reduction reaction(NRR)shows promise in nitrogen fixation.Here,we proposed active and stable single-atom catalysts(SACs)toward NRR,where transition metals are anchored on nitrogenated carbon nanotubes(NCNTs).Among the screened nine common transition metals(Ti,V,Cr,Mn,Fe,Mo,Ru,Rh,and Ag)on(4,4)NCNTs,we found Mo-NCNT possesses the most excellent NRR catalytic activity and selectivity with a low overpotential of 0.29 V.Then,the NRR performance of Mo-NCNT was further engineered by controlling the nanotube diameter,where the lowest overpotential is 0.18 V at a diameter of 9.6Å.In addition,we found a linear scaling relation between*NNH and*NH_(2)on the studied catalysts with the exception of(2,2)and(3,3)Mo-NCNTs,owing to their extremely unstable structures.We attribute the outstanding NRR performance of Mo-NCNT to the moderate adsorption of N_(2)due to the slightly low d-band center of Mo,and the charge donating and accepting capacity of NCNTs.This work has provided a deeper insight into designing highefficiency and stable NRR SACs supported by NCNTs. 展开更多
关键词 nitrogen reduction single-atom catalysts density functional theory(DFT) carbon nanotubes nitrogen doping
原文传递
Twice-split phosphorus application alleviates low-temperature impacts on wheat by improved spikelet development and setting
16
作者 XU Hui HOU Kuo-yang +7 位作者 FANG Hao LIU Qian-qian WU Qiu LIN Fei-fei DENG Rui ZHANG Lin-jie CHEN Xiang LI Jin-cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3667-3680,共14页
Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the an... Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.In HuangHuai-Hai wheat growing area of China,the late spring coldness occurring at the jointing-booting stage(the anther interval stage)has resulted in significant yield losses of winter wheat.This study attempts to develop an economical,feasible,and efficient cultivation technique for improving the low-temperature(LT)resistance of wheat by exploring the effects of twice-split phosphorus application(TSPA)on wheat antioxidant characteristics and carbon and nitrogen metabolism physiology under LT treatment at the anther interval stage using Yannong 19 as the experimental material.The treatments consisted of traditional phosphorus application and TSPA,followed by a-4℃ LT treatment and natural temperature(NT)control at the anther interval stage.Our analyses showed that,compared with the traditional application,the TSPA increased the net photosynthetic rate(P_(n)),stomatal conductance(Gs),and transpiration rate(T_(r))of leaves and reduced the intercellular carbon dioxide concentration(C_(i)).The activity of carbon and nitrogen metabolism enzymes in the young wheat spikes was also increased by the TSPA,which promoted the accumulation of soluble sugar(SS),sucrose(SUC),soluble protein(SP),and proline(Pro)in young wheat spike and reduced the toxicity of malondialdehyde(MDA).Due to the improved organic nutrition for reproductive development,the young wheat spikes exhibited enhanced LT resistance,which reduced the sterile spikelet number(SSN)per spike by 11.8%and increased the spikelet setting rate(SSR)and final yield by 6.0 and 8.4%,respectively,compared to the traditional application.The positive effects of split phosphorus application became more pronounced when the LT treatment was prolonged. 展开更多
关键词 optimizing phosphorus application low-temperature stress carbon and nitrogen metabolism young spike development WHEAT
下载PDF
Boron and nitrogen dual-doped carbon as a novel cathode for high performance hybrid ion capacitors 被引量:1
17
作者 Jiangmin Jiang Ping Nie +5 位作者 Shan Fang Yadi Zhang Yufeng An Ruirui Fu Hui Dou Xiaogang Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第4期624-628,共5页
Hybrid ion capacitors have been considered as a very attractive energy source with high energy density and power density since it combines both merits of lithium ion batteries and supercapacitors. However,their commer... Hybrid ion capacitors have been considered as a very attractive energy source with high energy density and power density since it combines both merits of lithium ion batteries and supercapacitors. However,their commercial application has been limited by the mismatch of charge-storage capacity and electrode kinetics between the capacitor-type cathode and battery-type anode. Herein, B and N dual-doped 3D superstructure carbon cathode is prepared through a facile template method. It delivers a high specific capacity, excellent rate capability and good cycling stability due to the B, N dual-doping, which has a profound effect in control the porosity, functional groups, and electronic conductivity for the carbon cathode. The hybrid ion capacitors using B, N dual-doping carbon cathode and prelithiated graphite anode show a high energy density of 115.5 Wh/kg at 250 W/kg and remain about 53.6 Wh/kg even at a high power density of 10 kW/kg. Additionally, the novel hybrid device achieves 76.3% capacity retention after 2000 cycles tested at 1250 W/kg power density. Significantly, the simultaneous manipulation of heteroatoms in carbon materials provides new opportunities to boost the energy and power density for hybrid ion capacitors. 展开更多
关键词 Hybrid ion capacitors Boron-doping nitrogen-doping Dual-doped carbon Template method Energy density
原文传递
Altitudinal trends in δ^13C value,stomatal density and nitrogen content of Pinus tabuliformis needles on the southern slope of the middle Qinling Mountains,China 被引量:2
18
作者 LIU Xian-zhao GAO Chang-chun +2 位作者 SU Qing ZHANG Yong Song Yan 《Journal of Mountain Science》 SCIE CSCD 2016年第6期1066-1077,共12页
In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon i... In this study,a coniferous tree species(Pinus tabuliformis Carr.) was investigated at a moderate-altitude mountainous terrain on the southern slope of the middle Qinling Mountains(QLM) to detect the trends in carbon isotope ratio( δ^(13)C),leaf nitrogen content(LNC) and stomatal density(SD) with altitude variation in northsubtropical humid mountain climate zone of China.The results showed that LNC and SD both significantly increased linearly along the altitudinal gradient ranging from 1000 to 2200 m,whereas leafδ^(13)C exhibited a significantly negative correlation with the altitude.Such a correlation pattern differs obviously from that obtained in offshore low-altitude humid environment or inland high-altitude semi-arid environment,suggesting that the pattern of increasing δ^(13)C with the altitude cannot be generalized.The negative correlation between δ ^(13)C and altitude might be attributed mainly to the strengthening of carbon isotope fractionation in plants caused by increasing precipitation with altitude.Furthermore,there was a remarkable negative correlation between leaf δ ^(13)C and LNC.One possible reason was that increasing precipitation that operates to increase isotopic discrimination with altitude overtook the LNC in determining the sign of leaf δ ^(13)C.The significant negative correlation between leaf δ ^(13)C and SD over altitudes was also found in the present study,indicating that increases in SD with altitude would reduce,rather than enhance plant δ^(13)C values. 展开更多
关键词 气孔密度 氮含量 南坡 中段 秦岭 松针叶 碳同位素比值 海拔高度
下载PDF
Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors 被引量:4
19
作者 Fei Sun Haobin Wu +4 位作者 Xin Liu Fang Liu Huihui zhou Jihui Gao Yunfeng Lu 《Nano Research》 SCIE EI CAS CSCD 2016年第11期3209-3221,共13页
Supercapacitors have high power densities, high efficiencies, and long cycling lifetimes; however, to enable their wider use, their energy densities must be significantly improved. The design and synthesis of improved... Supercapacitors have high power densities, high efficiencies, and long cycling lifetimes; however, to enable their wider use, their energy densities must be significantly improved. The design and synthesis of improved carbon materials with better capacitance, rate performance, and cycling stability has emerged as the main theme of supercapacitor research. Herein, we report a facile synthetic method to prepare nitrogen-rich carbon particles based on a continuous aerosol- spraying process. The method yields particles that have high surface areas, a uniform microporous structure, and are highly N-doped, resulting in a synergism that enables the construction of supercapacitors with high energy and power density for use in both aqueous and commercial organic electrolytes. Furthermore, we have used density functional theory calculations to show that the improved performance is due to the enhanced wettability and ion adsorption interactions at the carbon/electrolyte interface that result from nitrogen doping. These findings provide new insights into the role of heteroatom doping in the capacitance enhancement of carbon materials; in addition, our method offers an efficient route for large-scale production of doped carbon. 展开更多
关键词 nitrogen doping carbon spheres SCALABLE SUPERCAPACITORS density functional theory(DFT)
原文传递
Tailoring local structures of atomically dispersed copper sites for highly selective CO_(2) electroreduction
20
作者 Kyung‐Jong Noh Byoung Joon Park +5 位作者 Ying Wang Yejung Choi Sang‐Hoon You Yong‐Tae Kim Kug‐Seung Lee Jeong Woo Han 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期79-90,共12页
Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construc... Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions. 展开更多
关键词 atomic local structure density functional theory electrochemical CO_(2)reduction metal nitrogen‐doped carbon single‐atom catalyst
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部