期刊文献+
共找到16,295篇文章
< 1 2 250 >
每页显示 20 50 100
Thermodynamic Research on Precipitates in Low Carbon Nb-Microalloyed Steels Produced by Compact Strip Production 被引量:3
1
作者 Song XIANG Guoquan LIU Yang LI Changrong LI Andong WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第2期267-272,共6页
Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinemen... Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinement.With decreasing the rolling temperature, dislocations can be pinned by carbonitrides and the strength is increased. Based on the two sublattice model, with metal atom sublattice and interstitial atom sublattice,a thermodynamic model for carbonitride was established to calculate the equilibrium between matrix and carbonitride. In the steel produced by CSP, the calculation results showed that the starting temperature of precipitation of Ti and Nb are 1340℃ and 1040℃, respectively. In the range of 890-950℃, Nb rapidly precipitated. And the maximum of the atomic fraction of Nb in carbonitride was about 0.68. The morphologies and energy spectrum of the precipitates showed that (NbTi) (CN) precipitated near the dislocations. The experiment results show that Nb rapidly precipitated when the temperature was lower than 970℃, and the atomic fraction of Nb in carbonitride was about 60%-80%. The calculation results are in agreement with the experiment data. Therefore the thermodynamic model can be a useful assistant tool in the research on the precipitates in the low carbon steels produced by CSP. 展开更多
关键词 Compact strip production NIOBIUM Low carbon microalloyed steels PRECIPITATION Thermodynamic model
下载PDF
Chloride resistance of Cr-bearing alloy steels in carbonated concrete pore solutions 被引量:1
2
作者 Jing Ming Jin-jie Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第4期494-504,共11页
The effect of carbonation on the chloride resistance of low-carbon steel and two Cr-bearing alloy steels in simulated concrete pore solutions was investigated.The chloride threshold values of steels were determined on... The effect of carbonation on the chloride resistance of low-carbon steel and two Cr-bearing alloy steels in simulated concrete pore solutions was investigated.The chloride threshold values of steels were determined on the basis of corrosion potential(Ecorr)and polarization resistance(Rp).Moreover,the chloride-induced corrosion behavior of steels was evaluated using electrochemical impedance spectroscopy,cyclic voltammetry,cathodic potentiodynamic polarization,and scanning electron microscopy/energy dispersive X-ray spectroscopy measurements.Alloy steels have higher chloride resistance than low-carbon steel in carbonated and non-carbonated concrete pore solutions.The chloride resistance of alloy steels improves with increasing Cr content.In addition,the chloride resistance of all steels is negatively affected by the carbonation of concrete pore solution,especially for alloy steel with high Cr content in the presence of high chloride content. 展开更多
关键词 alloy steel concrete PORE solution carbonATION CHLORIDE RESISTANCE ELECTROCHEMICAL measurements
下载PDF
Abrasive Wear Characteristics of Carbon and Low Alloy Steels for Better Performance of Farm Implements 被引量:2
3
作者 M.Kumar and R. C Gupta(Centre of Advanced Study, Dept. of Metallurgical Engineering, Institute of Technology,Banaras Hindu University, Vaanasi -221 005, India) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第2期91-96,共6页
The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves... The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves the hardness, tensile strength and abrasion resistance of medium carbon and high C - low Cr steels. The results indicate that the material removal during abrasion is controlled by a number of factors, such as hardness, chemical composition, microstructure and heat treatment conditions. The conclusion is that the heat treated high C - low Cr steel and mild steel carburized by using coaltar pitch provide the best hardness and abrasion resistance and thus appear to be the most suitable materials for making agricultural tools. 展开更多
关键词 Abrasive Wear Characteristics of carbon and Low alloy steels for Better Performance of Farm Implements MPA
下载PDF
Carbon Equivalent Fundamentals in Evaluating the Weldability of Microalloy and Low Alloy Steels 被引量:2
4
作者 Munkaila Alhassan Yussif Bashiru 《World Journal of Engineering and Technology》 2021年第4期782-792,共11页
Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style... Understanding the weldability of steel in relation to the use of carbon equivalent is very necessary </span><span style="white-space:normal;font-family:"">for</span><span style="white-space:normal;font-family:""> the welding industry. The study was poised to unearth the fundamentals of carbon equivalent as applied in evaluating the weldability of steel. The study used </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">two-stage design approach to address the problem of carbon equivalence weldability of steel, thus, survey and experimental. Two different steels were tested to ascertain their chemical composition which could inform carbon equivalent calculation, and the results revealed microalloy and low alloy steels respectively. In subjecting the microalloy steel to carbon equivalent analyses of the AWS and IIW coefficients;revealed a value (CEV) = 0.11 each, suggesting that this microalloy steel has excellent weldability;no preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:""> is required. A successful welding operation on this steel does not depend on preheat</span><span style="white-space:normal;font-family:"">ing</span><span style="white-space:normal;font-family:"">.<b> </b>Also</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> the average results of the low alloy steel revealed a value (CEV) = 0.37 and 0.32 respectively, suggesting that this type of steel has very good weldability and may require </span><span style="white-space:normal;font-family:"">to </span><span style="white-space:normal;font-family:"">preheat. It is recommended that welders have </span><span style="white-space:normal;font-family:"">a </span><span style="white-space:normal;font-family:"">general idea about the weldability of steel with regard to carbon equivalent calculation. In addition</span><span style="white-space:normal;font-family:"">,</span><span style="white-space:normal;font-family:""> they should understand the chemical compositions of steels they are dealing with. 展开更多
关键词 carbon Equivalent Evaluation of Weldability Microalloy steel Low alloy steel Chemical Composition
下载PDF
High Carbon Alloy Steels with Multiple Types of Ultra-fine Carbides and Their Characteristics 被引量:9
5
作者 MAYong-qing GAOHong-tao QIYu-hong ZHANGZhan-Ping DAIYu-mei LIUYan-xia 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期117-121,共5页
Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of ... Under normal forging and annealing conditions, there are different ultra fine carbides (M3C, M23C6, M7Cj, M6C and MC) in high carbon alloy steels when alloy composition design is carried out properly. On the basis of carbides transformation orderliness, the alloy composition design of the high carbon alloy steels is conducted by phase-equilibrium thermodynamic calculation for Fe-Cr-W-Mo-V-C system. The nucleation and growth of new carbides, dissolution of previous partial carbides in these steels during annealing process, all these lead to ultra-fine distribution of carbides. Due to different crystal structures of carbides and different thermodynamics as well dynamics parameters of the carbides dissolution and precipitation, the range of quenching temperature of these steels is widened, and the good temper-resistance is obtained. The characteristics of heat treatment process and microstructure variance, and the carbides transformation for different temperature are explained by the phase-equilibrium component satisfactorily. Their bend and yield strength, flexibility and toughness all are advanced markedly comparing with that of kindred steels. Results of the applications have proved that the microstructure of ultra-fine carbides in these steels played importance roles in the enhancement of edginess and fatigue crack resistance of the die and knives. 展开更多
关键词 超细硬质合金 高碳钢 结构设计 成分设计
下载PDF
PHASE TRANSFORMATION UNIT OF BAINITIC FERRITE AND ITS SURFACE RELIEF IN LOW AND MEDIUM CARBON ALLOY STEELS
6
作者 YU Degang CHEN Dajun ZHENG Jinghong HE Yirong SHEN Fufa Shanghai Jiaotong University,Shanghai,China Professor,Department of Materials Science and Engineering,Shanghai Jiaotong University,1954 Huashan Road,Shanghai 200030,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第3期161-167,共7页
The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units o... The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units of bainitic phase transformation.No carbide is precipitated from them.The bainitic O-carbides are precipitated from γ-α interface or carbon-rich austenite.The mode of arrangement of the units in ferrite sublath packet is in uni-or bi-di- rection.Single surface relief is produced by the accumulation of uniform shear strains with all the ferrite units arranged unidirectionally in a sublath packet,while tent-shaped surface relief is formed by the integration of the uniform shear strains of two groups with ferrite units piling up in two directions and growing face to face;whereas if they grow back to back,the integra- tion will be responsible for invert-tent-shaped surface relief.The interface trace between two groups of ferrite units in a sublath packet is shown as“midrib”. 展开更多
关键词 low and medium carbon alloy steels BAINITE FERRITE phase transformation unit surface relief
下载PDF
Microstructure Evolution at Different Cooling Rates of Low Carbon Microalloyed Steels
7
作者 Elena Brandaleze Matias Ramirez Martina Avalos 《Journal of Chemistry and Chemical Engineering》 2017年第1期22-29,共8页
In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical... In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical properties such as high formability, high toughness and adequate strength. For this reason it is relevant to identify and determine the volume fraction of the ferrite, bainite and martensite present in the structure. The microalloying elements: V, Nb and Ti promote carbides precipitation during cooling. The precipitates control the grain size refinement during hot rolling process and the mechanical properties of the steel. In this sense it is necessary to increase the knowledge on the microstructure evolution at different cooling rates. In this paper, the results obtained on two low carbon microalloyed steels (with C contents between 0.11%-0.06%) are reported. An integrated methodology including dilatometry in combination with microscopy techniques was applied. By EBSD (Electron Backscatter Diffraction) technique and microhardness measurements, the structural study was completed. Through a thermodynamic simulation using Fact Sage the type of precipitates in the studied steels structure at the temperature range between 950 ℃ and 450 ℃, were predicted. The information on the evolution of the steel structure at rolling process conditions is relevant to consider changes in processing conditions. 展开更多
关键词 Low carbon steels dilatometry cooling curves phases transformation precipitates.
下载PDF
An Integrated Analysis on the Synergistic Reduction of Carbon and Pollution Emissions from China’s Iron and Steel Industry 被引量:1
8
作者 Quanyin Tan Fei Liu Jinhui Li 《Engineering》 SCIE EI CAS CSCD 2024年第9期111-121,共11页
Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions... Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future. 展开更多
关键词 Iron and steel industry carbon and pollution emissions Synergistic reduction Technological structure steel scrap Cross-elasticity
下载PDF
Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery 被引量:1
9
作者 Hui Chang Lulu Zhao +4 位作者 Shan Zhao Zong-Lin Liu Peng-Fei Wang Ying Xie Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期400-410,I0010,共12页
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ... The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance. 展开更多
关键词 FeCo alloy N S co-doped carbon DFT calculation Zn-air batteries Interfacial interaction
下载PDF
Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption 被引量:1
10
作者 Xuanqi Yang Honghan Wang +5 位作者 Jing Chen Qingda An Zuoyi Xiao Jingai Hao Shangru Zhai Junye Sheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期812-824,共13页
Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband... Electromagnetic wave(EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health.However,obtaining lightweight,high-performance,and broadband EMW-absorbing material remains an overwhelming challenge.Creating dielectric/magnetic composites with customized structures is a strategy with great promise for the development of high-performance EMW-absorbing materials.Using layered double hydroxides as the precursors of bimetallic alloys and combining them with porous biomass-derived carbon materials is a potential way for constructing multi-interface heterostructures as efficient EMW-absorbing materials because they have synergistic losses,low costs,abundant resources,and light weights.Here,FeNi alloy nanosheet array/Lycopodium spore-derived carbon(FeNi/LSC)was prepared through a simple hydrothermal and carbonization method.FeNi/LSC presents ideal EMW-absorbing performance by benefiting from the FeNi alloy nanosheet array,sponge-like structure,capability for impedance matching,and improved dielectric/magnetic losses.As expected,FeNi/LSC exhibited the minimum reflection loss of-58.3 dB at 1.5 mm with 20wt%filler content and a widely effective absorption bandwidth of 4.92 GHz.FeNi/LSC composites with effective EMW-absorbing performance provide new insights into the customization of biomass-derived composites as high-performance and lightweight broadband EMW-absorbing materials. 展开更多
关键词 spore-derived carbon FeNi alloy nanosheet array multi-interface heterostructures synergistic effect efficient electromagnet-ic wave absorption
下载PDF
Oxide and Sulfide Dispersive Precipitation and Effects on Microstructure and Properties of Low Carbon Steels 被引量:29
11
作者 DeluLIU ZhongbingWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第1期7-9,共3页
Electron microscopic investigation on low carbon steel strips produced by the CSP process has been carried out. Large number of oxide dispersive precipitates have been observed in the ferrite matrix of the steel strip... Electron microscopic investigation on low carbon steel strips produced by the CSP process has been carried out. Large number of oxide dispersive precipitates have been observed in the ferrite matrix of the steel strips. Dimension of them is about 10~20 nm. Electron diffraction study showed that the structure of these precipitates consists with cubic system spinel structure. Their lattice parameter is about 0.83 nm. The results implied that they should be complex oxides of Fe, Al et al. Small sulfide particles with 100-300 nm in size have also been observed. Remarkable strengthening and grain refinement effects can be obtained by the precipitations. The oxygen and sulfur in steels could play beneficial role under certain conditions. 展开更多
关键词 Low carbon steel CSP Spinel structure
下载PDF
In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels 被引量:13
12
作者 Xiang-liang Wan Kai-ming Wu +2 位作者 Gang Huang Ran Wei Lin Cheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第9期878-885,共8页
The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then gre... The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then grew in different directions through movement of grain boundaries into the ferrite phase. Subsequently, the adjacent austenite grains impinged against each other during the α→γtransformation. After the α→γ transformation, austenite grains coarsened via the coalescence of small grains and via boundary migration between grains. The growth process of austenite grains was a continuous process during heating, isothermal holding, and cooling in simulated thermal cycling. Abundant finely dispersed nanoscale TiN particles in a steel specimen containing 0.012wt% Ti effectively retarded the grain boundary migration, which resulted in refined austenite grains. When the Ti concentration in the steel was increased, the number of TiN particles de- creased and their size coarsened. The big particles were not effective in pinning the austenite grain boundary movement and resulted in coarse austenite grains. 展开更多
关键词 alloy steel AUSTENITE grain growth heat-affected zone COARSENING titanium nitride
下载PDF
Hot ductility behavior of V-N and V-Nb microalloyed steels 被引量:11
13
作者 Bing-hua Chen Hao Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第6期525-529,共5页
The hot ductility of V-N and V-Nb microalloyed steels was investigated on a Gleeble-1500 thermomechanical simulator, and the results were compared with those of V and Nb microalloyed steels. A ductility trough is foun... The hot ductility of V-N and V-Nb microalloyed steels was investigated on a Gleeble-1500 thermomechanical simulator, and the results were compared with those of V and Nb microalloyed steels. A ductility trough is found in both the steels in the temperature range of 700 to 1050℃. Compared to the V steel, the V-N steel has a wider and deeper ductility trough with the increase of N content, due to the in- creased precipitation of V(C, N) in the steel. Above 930℃, when 0.047wt% V is added to the 0.028wt% Nb-containing steel, the ductility becomes worse, owing to the rise of the onset dynamic recrystallization temperature. However, the ductility gets better at 800 to 930℃ be- cause of the coarsening of precipitates in austenite. With the improvement in ductility, the fracture mechanism is changed from intergranular to high ductile fracture in the temperature range of 800 to 1050℃. 展开更多
关键词 alloy steel DUCTILITY dynamic recrystallization PRECIPITATION
下载PDF
Austenite grain growth of medium-carbon alloy steel with aluminum additions during heating process 被引量:6
14
作者 Zi-yi Liu Yan-ping Bao +2 位作者 Min Wang Xin Li Fan-zheng Zeng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第3期282-290,共9页
In this study, the effects of heating temperature(850–1100°C) and holding time(30–150 min) on the grain growth behavior of austenite in medium-carbon alloy steel were investigated by conducting experiments. The... In this study, the effects of heating temperature(850–1100°C) and holding time(30–150 min) on the grain growth behavior of austenite in medium-carbon alloy steel were investigated by conducting experiments. The abnormal grain growth and mixed grain structure phenomenon are explained using an equilibrium precipitation phase diagram calculated by Thermo-Calc software package. The Al N particles were observed by field-emission scanning electron microscopy(FESEM), and the amount of AlN precipitations was detected by electron probe microanalysis(EPMA). Based on the research results, it was found that the average grain size of austenite in the test steel increased continuously with the increase of temperature and holding time. Furthermore, the abnormal growth of austenite occurred in the test steel at 950°C, and the heating temperature affected the austenite grain size more significantly. In addition, the decline in the amount of AlN second-phase particle in the test steel, which weakened the "pinning" effect on austenite grain boundaries, resulted in abnormal growth and the development of mixed austenite grain structures. The prediction model for describing the austenite grain growth of medium-carbon alloy steel during heating was established by regression analysis of the experimental data, and the model was verified to be highly accurate. 展开更多
关键词 alloy steel AUSTENITE GRAIN ALN growth model
下载PDF
High Nitrogen Austenitic Stainless Steels Manufactured by Nitrogen Gas Alloying and Adding Nitrided Ferroalloys 被引量:15
15
作者 LI Hua-bing JIANG Zhou-hua SHEN Ming-hui YOU Xiang-mi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第3期63-68,共6页
A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas... A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite. 展开更多
关键词 nitrogen gas alloying nitrided ferroalloy high nitrogen austenitic stainless steel vacuum induction melting electroslag remelting
下载PDF
Effect of Alloying Elements on Thermal Wear of Cast Hot-Forging Die Steels 被引量:8
16
作者 WANG Shu-qi CHEN Kang-min +2 位作者 CUI Xiang-hong JIANG Qi-chuan HONG Bian 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期53-59,共7页
The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wea... The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface. 展开更多
关键词 hot-forging die cast steel alloying element thermal wear MECHANISM
下载PDF
Bainite Transformation Under Continuous Cooling of Nb-Microalloyed Low Carbon Steel 被引量:10
17
作者 YI Hai-long DU Lin-xiu WANG Guo-dong LIU Xiang-hua 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第3期36-39,67,共5页
Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate ... Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate that bainite starting temperature decreases with raising cooling rate and increases with increasing deformation temperature. Deformation has an accelerative effect on the bainite transformation when the specimens are deformed at 950 ℃. When the deformation temperature increases, the effect of deformation on bainite starting temperature is weakened. The amount of bainite is influenced by strain, cooling rate, and deformation temperature. When the specimens are deformed below 900 ℃, equiaxed ferrites are promoted and the bainite transformation is suppressed. 展开更多
关键词 Nb-microalloyed low carbon steel bainite starting temperature BAINITE equiaxed ferrite retained austenite
下载PDF
A method to study interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel 被引量:3
18
作者 Yuan-zhi Zhu Jian-ping XU 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第9期821-826,共6页
A novel diffusion couple method was used to investigate the interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel and its effects on phase transformation at the interface. It is discovered that the... A novel diffusion couple method was used to investigate the interface diffusion of arsenic into a Nb-Ti microalloyed low carbon steel and its effects on phase transformation at the interface. It is discovered that the content of arsenic has great effect on grain growth and phase transformation at high temperature. When the arsenic content is no more than lwt%, there is no obvious grain growth and no obvious ferrite transitional region formed at the diffusion interface. However, when the arsenic content is no less than 5wt%, the grain grows very rapidly. In addition, the arsenic-enriched ferrite transitional layer forms at the diffusion interface in the hot-rolling process, which results from a slower diffusion rate of arsenic atoms than that of carbon in ferrite. 展开更多
关键词 low carbon steel alloy steel ARSENIC diffusion bonding phase transformation grain growth
下载PDF
Effects of Deformation on Bainite Transformation During Continuous Cooling of Low Carbon Steels 被引量:6
19
作者 DU Lin-xiu YI Hai-long DING Hua LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第2期37-39,共3页
Hot deformation experiments were carried out on Gleeble 1500 thermo-mechanical simulator. The bainite transformation after deformation was investigated by optical microstructure analysis. The results indicated that th... Hot deformation experiments were carried out on Gleeble 1500 thermo-mechanical simulator. The bainite transformation after deformation was investigated by optical microstructure analysis. The results indicated that the deformation accelerated the bainite transformation when the deformation was carried out at high temperature and no or little ferrite was precipitated before bainite transformation; when the deformation was carried out at low temperature, the deformation hindered the bainite transformation because a lot of ferrite precipitated before bainite transformation. 展开更多
关键词 DEFORMATION BAINITE continuous cooling low carbon steel
下载PDF
Kinetics of bainite-to-austenite transformation during continuous reheating in low carbon microalloyed steel 被引量:5
20
作者 Ming Chang Hao Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第5期427-432,共6页
A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-a... A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-austenite trans- formation was observed to take place in two steps at low heating rate. The first step is the dissolution of bainite, and the second one is the remaining bainite-to-austenite transformation controlled by a dissolution process. The calculation result of the kinetics of austenite formation shows that the two steps occur by diffusion at low heating rate. However, at high heating rate the bainite-to-austenite transformation occurs in a single step, and the process is mainly dominated by shear. The growth rate of austenite reaches the maximum at about 835℃ at different heating rates and the growth rate of austenite as a function of temperature increases with the increase in heating rate. 展开更多
关键词 low carbon steel MICROalloyING BAINITE AUSTENITE phase transformations REHEATING KINETICS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部