Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track...Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.展开更多
Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore d...Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low gra...Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.展开更多
The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of l...The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca~(2+)and adsorption of Cu~(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S~0 hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.展开更多
The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit...The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.展开更多
The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization ...The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.展开更多
X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi...X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.展开更多
Carbon-bearing stratum normally features low resistance and high polarization.If the lithostratigraphy of the exploration area contains large amounts of carbon,the induced polarization anomaly caused by metal sulfide ...Carbon-bearing stratum normally features low resistance and high polarization.If the lithostratigraphy of the exploration area contains large amounts of carbon,the induced polarization anomaly caused by metal sulfide ore bodies will be inundated by the high polarization of carbon-containing wall rock.In this work,we adopted time-domain induced polarization(TDIP)and controlled-source audio-frequency magnetotellurics(CSAMT)on deep prospecting of the carbon-bearing stratum of the Ar Horqin Banner,Inner Mongolia.The underground medium is divided into target geologic bodies according to the geological information within the known exploration line borehole,and the physical properties of various target geologic bodies are calculated using weighted averages to build a geologic-geophysical model that can fit the observation data.Consequently,we can determine the range and morphological characteristics of the electrical properties of the ore-bearing geologic bodies in the inversion results in the study area.Then we can use the characteristics summarized from the known exploration line to interpret unknown exploration line.Results indicated that,when the diff erence in physical properties between the ore body and interference wall rock is not clear,the geologic body can be classifi ed via the paragenetic(associated)assemblage relations of the underground medium.Geological interpretation is guided by the comprehensive physical properties of ore-bearing geologic bodies to avoid interferences.展开更多
Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So fa...Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So far, most mining and mineral beneficiation plants export raw materials only subjected to beneficiation process. Out of more than 200 deposits in Mongolia, 91 deposits had been explored with different methods and stages, and estimated the resource of 33 reserves. Without processing the iron ore, it is impossible to use it for steelmaking due to its high sulfur and phosphorus impurities. Therefore, to study the processing of iron ore deposits in Mongolia, we did a preliminary investigation of iron ore deposits and took samples from the Tamir Gol deposit with high silica and phosphorus content that is difficult to process. Then, conducted mineral analysis and determined the grain structure and beneficiation characteristics of Tamir Gol iron deposit. .展开更多
The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide suffici...The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide sufficient mass for this study and experiment, including sample preparation, mineralogical analysis of gold and associated elements, gravity concentration, and data interpretation and analysis. During the study, a grind optimization was conducted on the composites sample with varying grind size to evaluate the effect of grind size on gold recovery. The ore was moderately ground to the standard grind size of 80%, passing 106 µm, 75 µm, 53 µm and this nominal size was selected for the preliminary assessment for concentration optimization for this deposit. The gravity testing comprised three-stage concentration using Knelson concentrator. High recovery of gold from the gravity concentrates was achieved from the second gravity concentration. Based on the laboratory experimental result analysis, a grind size of P80 75 µm is selected as optimal size for the Ashashire gold deposit. Increasing the grind size from P80 of 75 µm to 106 µm decreases the recovery rate from 75% to 54%, or decreasing the grind size from P80 of 75 µm to 53 µm decreases the gold recovery rate to 37%. The native gold grain in the ores is mostly associated with quartz and fine gold is closely associated with pyrite. According to analysis of the fire assay, chemical, and mineralogical data, only gold and telluride is commercially valuable elements in the ores. Predominantly gold was occurred in the native form of Au-Te. The sample subjected to gravity separation assayed about 2.6 g/t Au.展开更多
Lithium-sulfur batteries(LSBs)have become promising next-generation energy storage technologies for electric vehicles and portable electronics,due to its excellent theoretical specific energy.However,the low conductiv...Lithium-sulfur batteries(LSBs)have become promising next-generation energy storage technologies for electric vehicles and portable electronics,due to its excellent theoretical specific energy.However,the low conductivity of sulfur species,notorious lithium dendrites,the severe"shuttle effect"of polysulfides(LiPSs)and the inferior kinetic reaction for LiPSs/Li_(2)S conversion during discharge-charge have seriously hindered their practical application,and also pose potential safety hazards.Owing to their superior porous architectures,high specific surface areas,excellent structural designability,functional modifiability,abundant active sites and flexibility of carbon-containing electrospun nanofibers(CENFs),they exhibited the superior characteristics that can simultaneously solve the above issues.In this review,we summarize the recent progress and application of CENFs in LSBs.First,we provide a brief introduction to the structure and composition controlled of carbon nanofibers by electrospinning.We then review progress in recent developments of CENFs for LSBs including cathodes,anodes,separators,and interlayers.We focus on how to solve practical issues that arise when the CENFs are applied to various parts of LSBs,and the relevant working mechanisms are described,from high sulfur loading and Li dendrites suppression to LiPSs’confinement and conversion.Finally,we summarize and propose the existing challenges and future prospects of CENFs,for the design and architecture of electrochemical components in Li-S energy storage systems.展开更多
In this paper, X-ray diffractogram analysis and SEM observation of Al$ C$ formed at high temperature from carbon-containing refractories ivith Al have been carried out. Aluminum added to carbon-containing refractories...In this paper, X-ray diffractogram analysis and SEM observation of Al$ C$ formed at high temperature from carbon-containing refractories ivith Al have been carried out. Aluminum added to carbon-containing refractories reacts with C(s) to form Al^ C^(s) gradually during heating from 600 ’C to 1200^0 . It is considered that the interlocked structure of Al^ C-$ plate crystals promotes the outstanding increase of hot modulus of rupture of carbon-containing refractories with Al. The HMOR of carbon-containing refractories added with Al additive from 0 to 5wt% increases by 2.8 times being from 6.5MPa to 18.2MPa. After a thermochemical calculation for hydration reaction processes ofAl^C^ and H^O (g), the equilibrium partial pressure chart ofH^O (g) in H^O-A^C^-Al^ OH)} system vs various temperatures has been attained . The H2 0 (g) partial pressure in the air needed for the Al^ C3 hydration reaction is no more than 10;18 atm at the temperature below 120t . It is considered that the burned carbon-containing re展开更多
A study was carried out on the volatilization kinetics of Zn in the pellets made of Zn-bearing dusts mixed with coal powder in a nitrogen atmosphere and within the temperature range between 1 100℃and 1 300℃. The stu...A study was carried out on the volatilization kinetics of Zn in the pellets made of Zn-bearing dusts mixed with coal powder in a nitrogen atmosphere and within the temperature range between 1 100℃and 1 300℃. The study shows that the reduction temperature has a significant effect on the volatilization rate of zinc and that either the coal particle size or the excess carbon content has no effect on the volatilization rate. The obtained activation energy for the volatilization of zinc is 79.42 kJ/mol. The volatilization rate of zinc is controlled by the reaction between the zinc oxides and CO.展开更多
Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of e...Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of extracting lithium from spodumene,lepidolite,petalite,and zinnwaldite by acid,alkali,salt roasting,and chlorination methods,and analyzes the resource intensity,environmental impact,and production cost of industrial lithium extraction from spodumene and lepidolite.It is found that the sulfuric acid method has a high lithium recovery rate,but with a complicated process and high energy consumption;alkali and chlorination methods can directly react with lithium ores,reducing energy consumption,but need to optimize reaction conditions and safety of equipment and operation;the salt roasting method has large material flux and high energy consumption,so require adjustment of sulfate ratio to increase the lithium yield and reduce production cost.Compared with extracting lithium from brine,extracting lithium from ores,calcination,roasting,purity,and other processes consume more resources and energy;and its environmental impact mainly comes from the pollutants discharged by fossil energy,9.3-60.4 times that of lithium extracted from brine.The processing cost of lithium extraction from lepidolite by sulfate roasting method is higher than that from spodumene by sulfuric acid due to the consumption of high-value sulfate.However,the production costs of both are mainly affected by the price of lithium ores,which is less competitive than that of extracting lithium from brine.Thus,the process of extracting lithium from ores should develop appropriate technology,shorten the process flow,save resources and energy,and increase the recovery rate of related elements to reduce environmental impact and improve the added value of by-products and the economy of the process.展开更多
Gaseous phases of carbon-containing and metastable oxides will be resulted from the carbonization of phenolic resin binders and the reduced reactions between C and oxides at high temperatures in carbon-containing refr...Gaseous phases of carbon-containing and metastable oxides will be resulted from the carbonization of phenolic resin binders and the reduced reactions between C and oxides at high temperatures in carbon-containing refractories. With the in-situ catalysis technique, these gaseous phases can be transformed to one-or two-dimensional bonding phases by deposition,which is favorable for the improvement on strength and toughness of carboncontaining refractories,especially low carbon refractories. The research results reveal that:( 1) the amorphous carbon resulted from phenolic resin can be transformed to carbon nanotubes,thus,the oxidation peak temperature is raised from 506 to 664. 6 ℃;( 2) onedimensional whiskers of MgO or Mg Al2 O4 can be in-situ formed in MgO-C refractories, and their CMOR,CCS,rupture displacement and residual CCS( two water quenching cycles,1 100 ℃) are increased by 66%,47%,13% and 26%,respectively;( 3) two-dimensional array structure of flake β-SiAlON can be in-situ formed in Al2 O3-C refractories,which improves the material strength by 60% and decreases the residual strength after thermal shock by only 4. 5 MPa. It is believed that the in-situ formation of one-or two-dimensional bonding phases at high temperatures can improvethe comprehensive thermal physical properties of carboncontaining refractories,and will be the developing trend of the strengthening and toughening of low carbon-containing refractories.展开更多
Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the s...Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the seepage of leaching solutions and the leaching efficiency of rare earth(RE)and aluminum(Al)were investigated,and the leaching kinetics,the mass transfer process,the adhesion work and the adhesion work reduction factor were analyzed to reveal its strengthening leaching mechanism.The results show that cetyltrimethylammonium bromide(CTAB)has a better strengthening effect on the leaching process than dodecyl trimethyl ammonium bromide(DTAB),sodium dodecyl sulfate(SDS),sodium oleate and oleic acid.In the presence of 0.04%CTAB in 0.2 mol/L solution,the permeability coefficient of WREOs increases from 0.945×10^(-5)to 1.640×10^(-5)cm·s^(-1),and the leaching efficiency of RE increases from 80%to 90%,confirming the promotion of surfactants on the leaching process of WREOs.Kinetic analysis shows that the leaching process conforms to the inner diffusion control model,and the leaching kinetics equations of RE and Al related to CTAB content are obtained.Mass transfer discussion shows a smaller height equivalent to theoretical plate(HETP)of RE and Al at CTAB content of 0.04%,suggesting the higher mass transfer efficiency here.According to the interfacial properties of leaching solutions,the calculated adhesion work and the adhesion work reduction factor further demonstrate the strengthening leaching effect of CTAB on the leaching process of WREOs.展开更多
The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The pe...The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The petrogenesis and metallogenesis of granitoids from the deposit are not determined,especially the interactions between ore-bearing(granodiorite porphyry)and barren samples(granodiorite and diorite).In the paper,the whole rock geochemical features shared a similar affinity to the middle-lower content and revealed that they derived from partial melting of the Cathaysian basement with the contribution of mantle materials,even represented that they generated in the plate subduction;LA-ICP-MS zircon U–Pb ages show that these granodiorites,granodioritic porphyry and diorite,were generated during 114–103 Ma.The ore-bearing samples mostly presented ε_(Hf)(t)of negative values(peak value is-4 to-3)with old two-stage Hf model ages(t_(DM)^(2))(peak value is 1.10–1.15 Ga),while the barren sample showed slightly negative ε_(Hf)(t)(peak value is-1 to 0)values with young t_(DM)^(2)(peak value is 1.00–1.05 Ga).The value of zircon Ce^(4+)/Ce^(3+)ratio mostly higher than 450 was first verified for the ore-bearing samples in the Dongnan Cu–Mo deposit,and the values of ore-bearing were found to be higher than those from the barren,which suggests that the ore-bearing formed in more oxidized parental magma with higher oxygen fugacity.Based on the geochemical characteristic of the element and isotope,we concluded that the Early Cretaceous multiphases magmatic activities,low melting temperature and low pressure of pluton,and high oxygen fugacity of zircon,were the favorable conditions for metallogenesis of Dongnan Cu–Mo deposit.展开更多
Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past...Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past,but only some validate their results using mineral grades or optimize the algorithms to classify rocks in real-time.This paper presents an ore-sorting algorithm based on image processing and machine learning that is able to classify rocks from a gold and silver mine based on their grade.The algorithm is composed of four main stages:(1)image segmentation and partition,(2)color and texture feature extraction,(3)sub-image classification using neural networks,and(4)a voting system to determine the overall class of the rock.The algorithm was trained using images of rocks that a geologist manually classified according to their mineral content and then was validated using a different set of rocks analyzed in a laboratory to determine their gold and silver grades.The proposed method achieved a Matthews correlation coefficient of 0.961 points,higher than other classification algorithms based on support vector machines and convolutional neural networks,and a processing time under 44 ms,promising for real-time ore sorting applications.展开更多
The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights ...The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights achieved,the material that compounds the structure can be subjected to different stress paths along the failure plane.The theoretical framework considered in the design of these structures generally is the critical state soil mechanics(CSSM).However,the data in the literature concerning the uniqueness of critical state line(CSL)is still controversial as the soil is subjected to different stress paths.With respect to tailings,this question is even more restricted.This paper studies two tailings with different gradings due to the beneficial processes over extension and compression paths.A series of drained and undrained triaxial tests was conducted over a range of initial densities and stress levels.In the q-p'plane,different critical stress ratio(M)values were obtained for compression and extension stress paths.However,the critical state friction angle is very similar with a slightly higher critical state friction angle for extension tests.Curved stress path dependent CSLs were obtained in the n-lnp0 plane with the extension tests below the CSL defined in compression.Regarding the fines content,the studied tailings presented very similar M and critical state friction angle values.However,the fines content af-fects the volumetric behavior of the studied tailings and the CSLs on the n-lnp0 plane shift downwards with the increasing fines content for compression and extension tests.In relation to dilatancy analysis,the fines content did not present an evident influence on the dilatancy of the materials.However,different values of mean stress ratio N were obtained between compression and extension tests and can corroborate the existence of non-unique CSLs for these materials.展开更多
基金the Foundation of State Key Laboratory of Nuclear Resources and Environment(Grant Nos.NRE2021-01,2022NRE34)the National Natural Science Foundation of China(Grant No.42162013)+1 种基金the Third Xinjiang Scientific Expedition Program(Grant No.2022xjkk1301)the Fund of National Key Laboratory of Science and Technology on Remote Sensing Information and imagery Analysis,Beijing Research Institute of Uranium Geology(Grant No.6142A01210405).
文摘Xiazhuang uranium ore field,located in the southern part of the Nanling Metallogenic Belt,is considered one of the largest granite-related U regions in South China.In this paper,we contribute new apatite fission track data and thermal history modeling to constrain the exhumation history and evaluate preservation potential of the Xiazhuang Uranium ore field.Nine Triassic outcrop granite samples collected from different locations of Xiazhuang Uranium ore field yield AFT ages ranging from 43 to 24 Ma with similar mean confined fission track lengths ranging from 11.8±2.0 to 12.9±1.9μm and Dpar values between 1.01 and 1.51μm.The robustness time-temperature reconstructions of samples from the hanging wall of Huangpi fault show that the Xiazhuang Uranium ore field experienced a time of monotonous and slow cooling starting from middle Paleocene to middle Miocene(~60-10 Ma),followed by relatively rapid exhumation in the late Miocene(~10-5 Ma)and nearly thermal stability in the Pliocene-Quaternary(~5-0 Ma).The amount of exhumation after U mineralization since the Middle Paleogene was estimated as~4.3±1.8 km according to the integrated thermal history model.Previous studies indicate that the ore-forming ages of U deposits in the Xiazhuang ore field are mainly before Middle Paleocene and the mineralization depths are more than 4.4±1.2 km.Therefore,the exhumation history since middle Paleocene plays important roles in the preservation of the Xiazhuang Uranium ore field.
文摘Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
基金This work was financially supported by the National Natural Science Foundation of China(No.51874018)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2022-07).
文摘Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.
基金financially supported from the National Natural Science Foundation of China(No.52164021)the Natural Science Foundation of Yunnan Province,China(No.2019FB078)。
文摘The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca~(2+)and adsorption of Cu~(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S~0 hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.
文摘The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.
基金funded by the “Laboratoire de Recherche Ressources, Matériaux et Ecosystémes”, University of Carthage 7021 Zarzouna, Bizerte, Tunisia
文摘The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.
基金supported by State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2022-16)China Postdoctoral Science Foundation (No.2021M700387)+1 种基金National Natural Science Foundation of China (No.G2021105015L)Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2904502)。
文摘X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.
基金The Research is funded by Comprehensive Intelligent Mapping System and Application of Geological Survey(DD20190415)Exploration and Development Tracking and Result Integration of Energy and Important Mineral Resources(DD20190457)Resource Assessment and Prediction for Main Tectonic Metallogenetic Domains in the World(DD20190459).
文摘Carbon-bearing stratum normally features low resistance and high polarization.If the lithostratigraphy of the exploration area contains large amounts of carbon,the induced polarization anomaly caused by metal sulfide ore bodies will be inundated by the high polarization of carbon-containing wall rock.In this work,we adopted time-domain induced polarization(TDIP)and controlled-source audio-frequency magnetotellurics(CSAMT)on deep prospecting of the carbon-bearing stratum of the Ar Horqin Banner,Inner Mongolia.The underground medium is divided into target geologic bodies according to the geological information within the known exploration line borehole,and the physical properties of various target geologic bodies are calculated using weighted averages to build a geologic-geophysical model that can fit the observation data.Consequently,we can determine the range and morphological characteristics of the electrical properties of the ore-bearing geologic bodies in the inversion results in the study area.Then we can use the characteristics summarized from the known exploration line to interpret unknown exploration line.Results indicated that,when the diff erence in physical properties between the ore body and interference wall rock is not clear,the geologic body can be classifi ed via the paragenetic(associated)assemblage relations of the underground medium.Geological interpretation is guided by the comprehensive physical properties of ore-bearing geologic bodies to avoid interferences.
文摘Iron ore processing for steel production is crucial to the development and economy of Mongolia. Regardless of having abundant natural resources and raw materials, Mongolia almost doesn’t produce final products. So far, most mining and mineral beneficiation plants export raw materials only subjected to beneficiation process. Out of more than 200 deposits in Mongolia, 91 deposits had been explored with different methods and stages, and estimated the resource of 33 reserves. Without processing the iron ore, it is impossible to use it for steelmaking due to its high sulfur and phosphorus impurities. Therefore, to study the processing of iron ore deposits in Mongolia, we did a preliminary investigation of iron ore deposits and took samples from the Tamir Gol deposit with high silica and phosphorus content that is difficult to process. Then, conducted mineral analysis and determined the grain structure and beneficiation characteristics of Tamir Gol iron deposit. .
文摘The study was conducted to determine the applicability of gravity separation method on the Ashashire gold ore deposit Benishangul gumuz region, western Ethiopia. The Ashashire composite was produced to provide sufficient mass for this study and experiment, including sample preparation, mineralogical analysis of gold and associated elements, gravity concentration, and data interpretation and analysis. During the study, a grind optimization was conducted on the composites sample with varying grind size to evaluate the effect of grind size on gold recovery. The ore was moderately ground to the standard grind size of 80%, passing 106 µm, 75 µm, 53 µm and this nominal size was selected for the preliminary assessment for concentration optimization for this deposit. The gravity testing comprised three-stage concentration using Knelson concentrator. High recovery of gold from the gravity concentrates was achieved from the second gravity concentration. Based on the laboratory experimental result analysis, a grind size of P80 75 µm is selected as optimal size for the Ashashire gold deposit. Increasing the grind size from P80 of 75 µm to 106 µm decreases the recovery rate from 75% to 54%, or decreasing the grind size from P80 of 75 µm to 53 µm decreases the gold recovery rate to 37%. The native gold grain in the ores is mostly associated with quartz and fine gold is closely associated with pyrite. According to analysis of the fire assay, chemical, and mineralogical data, only gold and telluride is commercially valuable elements in the ores. Predominantly gold was occurred in the native form of Au-Te. The sample subjected to gravity separation assayed about 2.6 g/t Au.
基金financially supported by the National Natural Science Foundation of China(Grant No.51702241)Key Program of Natural Science Foundation of Hubei Province(Contract No.2017CFA004)+1 种基金the Special Project of Central Government for Local Science and Technology Development of Hubei Province(No.2019ZYYD076)Open Foundation of State Key Laboratory of Advanced Refractories(No.SKLAR202002)。
文摘Lithium-sulfur batteries(LSBs)have become promising next-generation energy storage technologies for electric vehicles and portable electronics,due to its excellent theoretical specific energy.However,the low conductivity of sulfur species,notorious lithium dendrites,the severe"shuttle effect"of polysulfides(LiPSs)and the inferior kinetic reaction for LiPSs/Li_(2)S conversion during discharge-charge have seriously hindered their practical application,and also pose potential safety hazards.Owing to their superior porous architectures,high specific surface areas,excellent structural designability,functional modifiability,abundant active sites and flexibility of carbon-containing electrospun nanofibers(CENFs),they exhibited the superior characteristics that can simultaneously solve the above issues.In this review,we summarize the recent progress and application of CENFs in LSBs.First,we provide a brief introduction to the structure and composition controlled of carbon nanofibers by electrospinning.We then review progress in recent developments of CENFs for LSBs including cathodes,anodes,separators,and interlayers.We focus on how to solve practical issues that arise when the CENFs are applied to various parts of LSBs,and the relevant working mechanisms are described,from high sulfur loading and Li dendrites suppression to LiPSs’confinement and conversion.Finally,we summarize and propose the existing challenges and future prospects of CENFs,for the design and architecture of electrochemical components in Li-S energy storage systems.
文摘In this paper, X-ray diffractogram analysis and SEM observation of Al$ C$ formed at high temperature from carbon-containing refractories ivith Al have been carried out. Aluminum added to carbon-containing refractories reacts with C(s) to form Al^ C^(s) gradually during heating from 600 ’C to 1200^0 . It is considered that the interlocked structure of Al^ C-$ plate crystals promotes the outstanding increase of hot modulus of rupture of carbon-containing refractories with Al. The HMOR of carbon-containing refractories added with Al additive from 0 to 5wt% increases by 2.8 times being from 6.5MPa to 18.2MPa. After a thermochemical calculation for hydration reaction processes ofAl^C^ and H^O (g), the equilibrium partial pressure chart ofH^O (g) in H^O-A^C^-Al^ OH)} system vs various temperatures has been attained . The H2 0 (g) partial pressure in the air needed for the Al^ C3 hydration reaction is no more than 10;18 atm at the temperature below 120t . It is considered that the burned carbon-containing re
文摘A study was carried out on the volatilization kinetics of Zn in the pellets made of Zn-bearing dusts mixed with coal powder in a nitrogen atmosphere and within the temperature range between 1 100℃and 1 300℃. The study shows that the reduction temperature has a significant effect on the volatilization rate of zinc and that either the coal particle size or the excess carbon content has no effect on the volatilization rate. The obtained activation energy for the volatilization of zinc is 79.42 kJ/mol. The volatilization rate of zinc is controlled by the reaction between the zinc oxides and CO.
基金financially supported by the National Natural Science Foundation of China(71991484,41971265,72088101,and 71991480)the National Key R&D program of China(2021YFC2901801)。
文摘Lithium production in China mainly depends on hard rock lithium ores,which has a defect in resources,environment,and economy compared with extracting lithium from brine.This paper focuses on the research progress of extracting lithium from spodumene,lepidolite,petalite,and zinnwaldite by acid,alkali,salt roasting,and chlorination methods,and analyzes the resource intensity,environmental impact,and production cost of industrial lithium extraction from spodumene and lepidolite.It is found that the sulfuric acid method has a high lithium recovery rate,but with a complicated process and high energy consumption;alkali and chlorination methods can directly react with lithium ores,reducing energy consumption,but need to optimize reaction conditions and safety of equipment and operation;the salt roasting method has large material flux and high energy consumption,so require adjustment of sulfate ratio to increase the lithium yield and reduce production cost.Compared with extracting lithium from brine,extracting lithium from ores,calcination,roasting,purity,and other processes consume more resources and energy;and its environmental impact mainly comes from the pollutants discharged by fossil energy,9.3-60.4 times that of lithium extracted from brine.The processing cost of lithium extraction from lepidolite by sulfate roasting method is higher than that from spodumene by sulfuric acid due to the consumption of high-value sulfate.However,the production costs of both are mainly affected by the price of lithium ores,which is less competitive than that of extracting lithium from brine.Thus,the process of extracting lithium from ores should develop appropriate technology,shorten the process flow,save resources and energy,and increase the recovery rate of related elements to reduce environmental impact and improve the added value of by-products and the economy of the process.
文摘Gaseous phases of carbon-containing and metastable oxides will be resulted from the carbonization of phenolic resin binders and the reduced reactions between C and oxides at high temperatures in carbon-containing refractories. With the in-situ catalysis technique, these gaseous phases can be transformed to one-or two-dimensional bonding phases by deposition,which is favorable for the improvement on strength and toughness of carboncontaining refractories,especially low carbon refractories. The research results reveal that:( 1) the amorphous carbon resulted from phenolic resin can be transformed to carbon nanotubes,thus,the oxidation peak temperature is raised from 506 to 664. 6 ℃;( 2) onedimensional whiskers of MgO or Mg Al2 O4 can be in-situ formed in MgO-C refractories, and their CMOR,CCS,rupture displacement and residual CCS( two water quenching cycles,1 100 ℃) are increased by 66%,47%,13% and 26%,respectively;( 3) two-dimensional array structure of flake β-SiAlON can be in-situ formed in Al2 O3-C refractories,which improves the material strength by 60% and decreases the residual strength after thermal shock by only 4. 5 MPa. It is believed that the in-situ formation of one-or two-dimensional bonding phases at high temperatures can improvethe comprehensive thermal physical properties of carboncontaining refractories,and will be the developing trend of the strengthening and toughening of low carbon-containing refractories.
基金Financial supports for this work from National Natural Science Foundation of China(Nos.22078252 and 52274266)the Graduate Education Innovation Foundation of Wuhan Institute of Technology(No.CX2021463)the Young Top-notch Talent Cultivation Program of Hubei Province are greatly appreciated.
文摘Surfactants were proposed to be added into magnesium sulfate solution to improve the leaching process of weathered crust elution-deposited rare earth ores(WREOs).Effects of surfactants and their concentration on the seepage of leaching solutions and the leaching efficiency of rare earth(RE)and aluminum(Al)were investigated,and the leaching kinetics,the mass transfer process,the adhesion work and the adhesion work reduction factor were analyzed to reveal its strengthening leaching mechanism.The results show that cetyltrimethylammonium bromide(CTAB)has a better strengthening effect on the leaching process than dodecyl trimethyl ammonium bromide(DTAB),sodium dodecyl sulfate(SDS),sodium oleate and oleic acid.In the presence of 0.04%CTAB in 0.2 mol/L solution,the permeability coefficient of WREOs increases from 0.945×10^(-5)to 1.640×10^(-5)cm·s^(-1),and the leaching efficiency of RE increases from 80%to 90%,confirming the promotion of surfactants on the leaching process of WREOs.Kinetic analysis shows that the leaching process conforms to the inner diffusion control model,and the leaching kinetics equations of RE and Al related to CTAB content are obtained.Mass transfer discussion shows a smaller height equivalent to theoretical plate(HETP)of RE and Al at CTAB content of 0.04%,suggesting the higher mass transfer efficiency here.According to the interfacial properties of leaching solutions,the calculated adhesion work and the adhesion work reduction factor further demonstrate the strengthening leaching effect of CTAB on the leaching process of WREOs.
基金provided by the Opening Foundation of State Key Laboratory of Continental Dynamics(Grant No.21LCD08),Northwest University,China.
文摘The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The petrogenesis and metallogenesis of granitoids from the deposit are not determined,especially the interactions between ore-bearing(granodiorite porphyry)and barren samples(granodiorite and diorite).In the paper,the whole rock geochemical features shared a similar affinity to the middle-lower content and revealed that they derived from partial melting of the Cathaysian basement with the contribution of mantle materials,even represented that they generated in the plate subduction;LA-ICP-MS zircon U–Pb ages show that these granodiorites,granodioritic porphyry and diorite,were generated during 114–103 Ma.The ore-bearing samples mostly presented ε_(Hf)(t)of negative values(peak value is-4 to-3)with old two-stage Hf model ages(t_(DM)^(2))(peak value is 1.10–1.15 Ga),while the barren sample showed slightly negative ε_(Hf)(t)(peak value is-1 to 0)values with young t_(DM)^(2)(peak value is 1.00–1.05 Ga).The value of zircon Ce^(4+)/Ce^(3+)ratio mostly higher than 450 was first verified for the ore-bearing samples in the Dongnan Cu–Mo deposit,and the values of ore-bearing were found to be higher than those from the barren,which suggests that the ore-bearing formed in more oxidized parental magma with higher oxygen fugacity.Based on the geochemical characteristic of the element and isotope,we concluded that the Early Cretaceous multiphases magmatic activities,low melting temperature and low pressure of pluton,and high oxygen fugacity of zircon,were the favorable conditions for metallogenesis of Dongnan Cu–Mo deposit.
文摘Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past,but only some validate their results using mineral grades or optimize the algorithms to classify rocks in real-time.This paper presents an ore-sorting algorithm based on image processing and machine learning that is able to classify rocks from a gold and silver mine based on their grade.The algorithm is composed of four main stages:(1)image segmentation and partition,(2)color and texture feature extraction,(3)sub-image classification using neural networks,and(4)a voting system to determine the overall class of the rock.The algorithm was trained using images of rocks that a geologist manually classified according to their mineral content and then was validated using a different set of rocks analyzed in a laboratory to determine their gold and silver grades.The proposed method achieved a Matthews correlation coefficient of 0.961 points,higher than other classification algorithms based on support vector machines and convolutional neural networks,and a processing time under 44 ms,promising for real-time ore sorting applications.
基金wish to express their appreciation to Vale S.A.and Brazilian Research Council(CNPq)for the support to the research group.
文摘The disposal of mining tailings has increasingly focused on the use of dry stacks.These structures offer more security since they use filtered and compacted material.Because of the construction method and the heights achieved,the material that compounds the structure can be subjected to different stress paths along the failure plane.The theoretical framework considered in the design of these structures generally is the critical state soil mechanics(CSSM).However,the data in the literature concerning the uniqueness of critical state line(CSL)is still controversial as the soil is subjected to different stress paths.With respect to tailings,this question is even more restricted.This paper studies two tailings with different gradings due to the beneficial processes over extension and compression paths.A series of drained and undrained triaxial tests was conducted over a range of initial densities and stress levels.In the q-p'plane,different critical stress ratio(M)values were obtained for compression and extension stress paths.However,the critical state friction angle is very similar with a slightly higher critical state friction angle for extension tests.Curved stress path dependent CSLs were obtained in the n-lnp0 plane with the extension tests below the CSL defined in compression.Regarding the fines content,the studied tailings presented very similar M and critical state friction angle values.However,the fines content af-fects the volumetric behavior of the studied tailings and the CSLs on the n-lnp0 plane shift downwards with the increasing fines content for compression and extension tests.In relation to dilatancy analysis,the fines content did not present an evident influence on the dilatancy of the materials.However,different values of mean stress ratio N were obtained between compression and extension tests and can corroborate the existence of non-unique CSLs for these materials.