期刊文献+
共找到56,200篇文章
< 1 2 250 >
每页显示 20 50 100
Anisotropic Thermal Diffusivity Measurements in High-Thermal-Conductive Carbon-Fiber-Reinforced Plastic Composites 被引量:3
1
作者 Masaya Kuribara Hosei Nagano 《Journal of Electronics Cooling and Thermal Control》 2015年第1期15-25,共11页
This paper presents the temperature dependence of in-plane thermal diffusivity and anisotropy distribution for pitch-based carbon-fiber-reinforced polymers (CFRPs). The measurement was performed using the laser-spot p... This paper presents the temperature dependence of in-plane thermal diffusivity and anisotropy distribution for pitch-based carbon-fiber-reinforced polymers (CFRPs). The measurement was performed using the laser-spot periodic heating method. The samples were unidirectional (UD) and crossply (CP) CFRPs. All carbon fibers of the UD samples ran in one direction, while those of the CP samples ran in two directions. In both UD and CP CFRPs, from -80&deg;C to +80&deg;C, temperature dependence of thermal diffusivity values increased as temperature decreased. In this temperature range, the anisotropic ratio between the fiber direction and its perpendicular direction of the UD CFRP was 106 - 124. During the anisotropy distribution measurement, it was found that thermal anisotropy can be visualized by scanning the laser in a circle on the sample. The thermal diffusivity of the UD CFRP in the fiber direction was 17 times larger than that in the 15&deg;direction, and the thermal diffusivity in the other directions was lower than that in the 15&deg;direction. The anisotropy distribution for the CP CFRP reflected its inhomogeneous structure. 展开更多
关键词 AC Calorimetric Method Anisotropy carbon-fiber-reinforced Polymers High THERMAL Conductivity THERMAL DIFFUSIVITY
下载PDF
Achieving superior mechanical properties in friction lap joints of copper to carbon-fiber-reinforced plastic by tool offsetting 被引量:9
2
作者 L.H.Wu K.Nagatsuka K.Nakata 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第9期1628-1637,共10页
It is a challenge to achieve a sound welded metal/carbon-fiber-reinforced thermoplastic(CFRTP) joint with high strength and few bubbles. In this study, sound lap joints of Cu and CFRTP were obtained by friction lap ... It is a challenge to achieve a sound welded metal/carbon-fiber-reinforced thermoplastic(CFRTP) joint with high strength and few bubbles. In this study, sound lap joints of Cu and CFRTP were obtained by friction lap joining(FLJ) directly at rotation rates of 600-2000 rpm, with the welding tool at the joint center and offsetting the tool 7 mm away from the center toward the retreating side, respectively. Tool offsetting reduced the non-uniform temperature distribution in the lap joints resulting from the high conductivity of Cu, which not only enhanced the tensile shear force from 0.89-2.25 kN to 1.71-3.54 kN,with the maximum increasing rate of 135%, but also reduced the bubble area to only 19% of the original level of 2000 rpm. It is the first time to report a high-quality Cu/CFRTP joint with a high strength and few bubbles. The large increase of the strength after tool offsetting was attributed to the increase of the joining area, the decrease of bubbles and the decrease of the CFRTP degradation. The details on the generation,quantitative distribution and expulsion of the bubbles in the FLJ joints were discussed. 展开更多
关键词 Hybrid joining plastic Metal carbon-fiber-reinforced plastic Properties
原文传递
Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer’s disease 被引量:3
3
作者 Jun Chang Yujiao Li +4 位作者 Xiaoqian Shan Xi Chen Xuhe Yan Jianwei Liu Lan Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期619-628,共10页
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime... Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic. 展开更多
关键词 Alzheimer’s disease amyloid-β cell therapy extracellular vesicle neural stem cell synaptic plasticity tau
下载PDF
Direct joining of oxygen-free copper and carbon-fiber-reinforced plastic by friction lap joining 被引量:10
4
作者 L.H. Wu K. Nagatsuka K. Nakata 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期192-197,共6页
Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min w... Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min with a constant rotation rate of 1500 rpm and a nominal plunge depth of 0.9 ram. It is the first time to report the joining of CFRTP to Cu by FLJ. As the joining speed increased, the tensile shear force (TSF) of joints increased first, and decreased thereafter. The maximum TSF could reach 2.3 kN ( 15 mm in width). Hydrogen bonding formed between the amide group of CFRTP and the thin Cu20 layer on the Cu surface, which mainly contributed to the joint bonding. The influence factors of the TSF of the joints at different joining speeds were discussed. The TSF was mainly affected by the joining area, the degradation of the plastic matrix and the number and the size of bubbles. As the joining speed increased, the influence factors varied as follows: the joining area increased first and then decreased; the degra- dation of the plastic matrix and the number and the size of bubbles decreased. The maximum TSF was the comprehensive result of the relatively large joining area, small degradation of the plastic matrix and small number and sizes of bubbles. 展开更多
关键词 Friction lap joining Metal plastic Carbon-fiber reinforced thermoplastic Dissimilar materials joining
原文传递
Upcycling plastic wastes into value-added products via electrocatalysis and photoelectrocatalysis 被引量:1
5
作者 Sungsoon Kim Dongjae Kong +1 位作者 Xiaolin Zheng Jong Hyeok Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期522-541,共20页
Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only ... Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only 9%,has led to a monumental environmental crisis.Plastic recycling has emerged as a vital response to this crisis,offering sustainable solutions to mitigate its environmental impact.Among these recycling efforts,plastic upcycling has garnered attention,which elevates discarded plastics into higher-value products.Here,electrocatalytic and photoelectrocatalytic treatments stand at the forefront of advanced plastic upcycling.Electrocatalytic or photoelectrocatalytic treatments involve chemical reactions that facilitate electron transfer through the electrode/electrolyte interface,driven by electrical or solar energy,respectively.These methods enable precise control of chemical reactions,harnessing potential,current density,or light to yield valuable chemical products.This review explores recent progress in plastic upcycling through electrocatalytic and photoelectrocatalytic pathways,offering promising solutions to the plastic waste crisis and advancing sustainability in the plastics industry. 展开更多
关键词 plastic upcycling Electrocatalytic reaction Photoelectrocatalytic reaction Value-added product
下载PDF
Lymphatic plastic bronchitis and primary chylothorax: A study based on computed tomography lymphangiography 被引量:1
6
作者 Xing-Peng Li Yan Zhang +4 位作者 Xiao-Li Sun Kun Hao Meng-Ke Liu Qi Hao Ren-Gui Wang 《World Journal of Clinical Cases》 SCIE 2024年第14期2350-2358,共9页
BACKGROUND This study presents an evaluation of the computed tomography lymphangio-graphy(CTL)features of lymphatic plastic bronchitis(PB)and primary chylotho-rax to improve the diagnostic accuracy for these two disea... BACKGROUND This study presents an evaluation of the computed tomography lymphangio-graphy(CTL)features of lymphatic plastic bronchitis(PB)and primary chylotho-rax to improve the diagnostic accuracy for these two diseases.AIM To improve the diagnosis of lymphatic PB or primary chylothorax,a retrospective analysis of the clinical features and CTL characteristics of 71 patients diagnosed with lymphatic PB or primary chylothorax was performed.METHODS The clinical and CTL data of 71 patients(20 with lymphatic PB,41 with primary chylothorax,and 10 with lymphatic PB with primary chylothorax)were collected retrospectively.CTL was performed in all patients.The clinical manifestations,CTL findings,and conventional chest CT findings of the three groups of patients were compared.The chi-square test or Fisher's exact test was used to compare the differences among the three groups.A difference was considered to be statistically significant when P<0.05.RESULTS(1)The percentages of abnormal contrast medium deposits on CTL in the three groups were as follows:Thoracic duct outlet in 14(70.0%),33(80.5%)and 8(80.0%)patients;peritracheal region in 18(90.0%),15(36.6%)and 8(80.0%)patients;pleura in 6(30.0%),33(80.5%)and 9(90.0%)patients;pericardium in 6(30.0%),6(14.6%)and 4(40.0%)patients;and hilum in 16(80.0%),11(26.8%)and 7(70.0%)patients;and(2)the abnormalities on conven-tional chest CT in the three groups were as follows:Ground-glass opacity in 19(95.0%),18(43.9%)and 8(80.0%)patients;atelectasis in 4(20.0%),26(63.4%)and 7(70.0%)patients;interlobular septal thickening in 12(60.0%),11(26.8%)and 3(30.0%)patients;bronchovascular bundle thickening in 14(70.0%),6(14.6%)and 4(40.0%)patients;localized mediastinal changes in 14(70.0%),14(34.1%),and 7(70.0%)patients;diffuse mediastinal changes in 6(30.0%),5(12.2%),and 3(30.0%)patients;cystic lesions in the axilla in 2(10.0%),6(14.6%),and 2(20.0%)patients;and cystic lesions in the chest wall in 0(0%),2(4.9%),and 2(4.9%)patients.CONCLUSION CTL is well suited to clarify the characteristics of lymphatic PB and primary chylothorax.This method is an excellent tool for diagnosing these two diseases. 展开更多
关键词 LYMPHATIC plastic bronchitis Primary chylothorax Direct lymphangiography Computed tomography lymphangiography
下载PDF
3'-Deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome 被引量:1
7
作者 Yize Qi Yao Zhou +8 位作者 Jiyang Li Fangyuan Zhu Gengni Guo Can Wang Man Yu Yijie Wang Tengfei Ma Shanwu Feng Li Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2270-2280,共11页
Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic ... Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome. 展开更多
关键词 3′-deoxyadenosin hippocampus long-term potentiation METHAMPHETAMINE NOD-like receptor family pyrin domain containing-3(NLRP3)inflammasome synaptic plasticity
下载PDF
Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications
8
作者 Yilin Sun Huaipeng Wang Dan Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期403-434,共32页
Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to explo... Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years.Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation,improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions.Herein,several fascinating strategies for synap-tic plasticity modulation through chemical techniques,device structure design,and physical signal sensing are reviewed.For chemical techniques,the underly-ing mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted.Based on device structure design,the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions.Besides,integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light,strain,and temperature.Finally,considering that the relevant technology is still in the basic exploration stage,some prospects or development suggestions are put forward to promote the development of neuromorphic devices. 展开更多
关键词 plasticity modulation Dynamic plasticity Chemical techniques Programmable operation Neuromorphic sensing
下载PDF
Mitochondrial recruitment in myelin:an anchor for myelin dynamics and plasticity?
9
作者 Jean-David M.Gothié Timothy E.Kennedy 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1401-1402,共2页
Optimal propagation of neuronal electrical impulses depends on the insulation of axons by myelin,produced in the central nervous system by oligodendrocytes.Myelin is an extension of the oligodendrocyte plasma membrane... Optimal propagation of neuronal electrical impulses depends on the insulation of axons by myelin,produced in the central nervous system by oligodendrocytes.Myelin is an extension of the oligodendrocyte plasma membrane,which wraps around an axon to form a compact multi-layered sheath.Myelin is composed of a substantially higher proportion of lipids compared to other biological membranes and enriched in a small number of specialized proteins. 展开更多
关键词 plasticITY insulation DYNAMICS
下载PDF
Perspectives in human brain plasticity sparked by glioma invasion:from intraoperative(re)mappings to neural reconfigurations
10
作者 Sam Ng Hugues Duffau Guillaume Herbet 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期947-948,共2页
Exploring the aptitude of the human brain to compensate functional consequences of a lesion damaging its structural architecture is a key challenge to improve patient care in various neurological diseases,to optimize ... Exploring the aptitude of the human brain to compensate functional consequences of a lesion damaging its structural architecture is a key challenge to improve patient care in various neurological diseases,to optimize neuroscientifically-informed strategies of postlesional rehabilitation,and ultimately to develop innovative neuro-regenerative therapies.The term‘plasticity’,initially referring to the intrinsic propensity of neurons to modulate their synaptic transmission in a learning situation,was progressively transposed to brain injury research and clinical neurosciences.Indeed,in the event of brain damage,adaptive mechanisms of compensation allow a partial reshaping of the structure and activities of the central nervous system,thus permitting to some extent the maintenance of brain functions. 展开更多
关键词 plasticITY figuration consequences
下载PDF
Glial progenitor heterogeneity and plasticity in the adult spinal cord
11
作者 Haichao Wei Jia Qian Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2567-2568,共2页
Glial progenitor cells were reported to have the capacity to generate various types of cells in both the central nervous system(CNS)and peripheral nervous system.Glial progenitor cells can respond to diverse environme... Glial progenitor cells were reported to have the capacity to generate various types of cells in both the central nervous system(CNS)and peripheral nervous system.Glial progenitor cells can respond to diverse environmental signals and transform into distinct populations,each serving specific functions.Notably,the adult spinal cord hosts various populations of glial progenitors,a region integral to the central nervous system.During development,glial progenitors express glial fibrillary acidic protein(GFAP;Dimou and Gotz,2014).However,the specific identities of GFAP-expressing progenitors in the adult spinal cord were not thoroughly investigated. 展开更多
关键词 functions plasticITY thoroughly
下载PDF
From mice to humans:a need for comparable results in mammalian neuroplasticity
12
作者 Marco Ghibaudi Enrica Boda Luca Bonfanti 《Neural Regeneration Research》 SCIE CAS 2025年第2期464-466,共3页
Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Over... Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023). 展开更多
关键词 plasticITY al. ARREST
下载PDF
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
13
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 plasticITY STRUCTURAL MECHANISMS
下载PDF
Photocatalytic Degradation of Plastic Waste: Recent Progress and Future Perspectives
14
作者 Amra Bratovcic 《Advances in Nanoparticles》 CAS 2024年第3期61-78,共18页
Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are... Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are unable to fully decompose and mineralize plastic waste. Therefore, there is a need to develop an environmentally friendly, innovative and sustainable photocatalytic process that can destroy these wastes with much less energy and chemical consumption. In photocatalysis, various nanomaterials based on wide energy band gap semiconductors such as TiO2 and ZnO are used for the conversion of plastic contaminants into environmentally friendly compounds. In this work, the removal of plastic fragments by photocatalytic reactions using newly developed photocatalytic composites and the mechanism of photocatalytic degradation of microplastics are systematically investigated. In these degradation processes, sunlight or an artificial light source is used to activate the photocatalyst in the presence of oxygen. 展开更多
关键词 plastic Waste Microplastics Photocatalytic Method DEGRADATION SEMICONDUCTORS Heterogeneous Photocatalysts
下载PDF
Impact of Plastic Waste on the Human Health in Low-Income Countries: A Systematic Review
15
作者 Ramde Wendkoaghenda Sophie Gbandama Koffi Kouame Pacome +5 位作者 Gansore Aminata Camara Kelety Tolno Barthélemy Assogba Ange Wenceslas Vinciale Niare Boubacar Patrice Ngangue 《Journal of Environmental Protection》 2024年第5期572-595,共24页
Background: Plastic pollution is the accumulation of waste composed of plastic and its derivatives all over the environment. Whether in the form of visible garbage or microparticles, as it slowly degrades, plastic pol... Background: Plastic pollution is the accumulation of waste composed of plastic and its derivatives all over the environment. Whether in the form of visible garbage or microparticles, as it slowly degrades, plastic pollution poses significant threats to terrestrial and aquatic habitats and the wildlife that call them home, whether through ingestion, entanglement or exposure to the chemicals contained in the material. Unfortunately, there is a lack of documentation on the impact of plastic waste on human health in low- and middle-income countries (LMICs). Methods: We searched five electronic databases (PubMed, Embase, Global Health, CINAHL and Web of Science) and gray literature, following the preferred reporting elements for systematic reviews and meta-analyses (PRISMA), for the impact of plastic waste on human health in developing countries. We included quantitative and qualitative studies written in English and French. We assessed the quality of the included articles using the Mixed Methods Appraisal tool (MMAT). Results: A total of 3779 articles were initially identified by searching electronic databases. After eliminating duplicates, 3167 articles were reviewed based on title and abstract, and 26 were selected for full-text review. Only three articles were retained. The three articles dealt with practices likely to lead to oral exposure to plastic chemicals in human health, as well as the level of awareness of participants concerning the possible impact of plastic on human health, namely, the use of plastic baby bottles, the use of microwaves to cook food and reheat precooked food, the use of plastic bottles to store water in the refrigerator, water purifier containers with plastic bodies and plastic lunch boxes, the reuse of plastic bags and the inadequacy of treatment facilities. Conclusion: Plastic waste poses different risks to human health at every stage of its life cycle. Hence, strategies must be adopted to raise public awareness of the dangers of plastic waste to their health. Trial registration: The review protocol is registered in the PROSPERO international prospective register of systematic reviews (ID = CRD42023409087). 展开更多
关键词 Human Population plastic Waste Health Impact Low-Income-Countries (Humans Iatrogenic Disease plasticS POLICY RECYCLING Waste Management)
下载PDF
Age-related differences in long-term potentiation-like plasticity and shortlatency afferent inhibition and their association with cognitive function
16
作者 Qian Lu Sisi Huang +7 位作者 Tianjiao Zhang Jie Song Manyu Dong Yilun Qian Jing Teng Tong Wang Chuan He Ying Shen 《General Psychiatry》 CSCD 2024年第1期73-82,共10页
Background The neurophysiological differences in cortical plasticity and cholinergic system function due to ageing and their correlation with cognitive function remain poorly understood.Aims To reveal the differences ... Background The neurophysiological differences in cortical plasticity and cholinergic system function due to ageing and their correlation with cognitive function remain poorly understood.Aims To reveal the differences in long-term potentiation(LTP)-like plasticity and short-latency afferent inhibition(SAl)between older and younger individuals,alongside their correlation with cognitive function using transcranial magnetic stimulation(TMS).Methods The cross-sectional study involved 31 younger adults aged 18-30 and 46 older adults aged 60-80.All participants underwent comprehensive cognitive assessments and a neurophysiological evaluation based on TMS.Cognitive function assessments included evaluations of global cognitive function,language,memory and executive function.The neurophysiological assessment included LTP-like plasticity and SAl.Results The findings of this study revealed a decline in LTP among the older adults compared with the younger adults(wald χ^(2)=3.98,p=0.046).Subgroup analysis further demonstrated a significant reduction in SAl level among individuals aged 70-80 years in comparison to both the younger adults(SAI(N20)):(t=-3.37,p=0.018);SAl(N20+4):(t=-3.13,p=0.038)and those aged 60-70(SAl(N20)):(t=3.26,p=0.025);SAl(N20+4):(t=-3.69,p=0.006).Conversely,there was no notable difference in SAl level between those aged 60-70 years and the younger group.Furthermore,after employing the Bonferroni correction,the correlation analysis revealed that only the positive correlation between LTP-like plasticity and language function(r=0.61,p<0.001)in the younger group remained statistically significant.Conclusions During the normal ageing process,a decline in synaptic plasticity may precede cholinergic system dysfunction.In individuals over 60 years of age,there is a reduction in LTP-like plasticity,while a decline in cholinergic system function is observed in those over 70.Thus,the cholinergic system may play a vital role in preventing cognitive decline during normal ageing.In younger individuals,LTP-like plasticity might represent a potential neurophysiological marker for language function. 展开更多
关键词 function YOUNGER plasticITY
下载PDF
Green synthesis of ZSM-5 using silica fume and catalytic co-cracking of lignin and plastics for production of monocyclic aromatics
17
作者 Hongbing Fu Yufei Gu +7 位作者 Tianhua Gao Fuwei Li Hengshuo Gu Hucheng Ge Yuke Liu Zhixia Li Hongfei Lin Jiangfei Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期92-105,共14页
ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles w... ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect. 展开更多
关键词 Silica fume ZSM-5 Catalytic co-cracking plasticS LIGNIN
下载PDF
Development of an enhanced online tritium monitoring system using plastic scintillation fiber array
18
作者 Wen-Yu Cheng Ke Deng +2 位作者 You-Shi Zeng Wei Liu Qin Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第10期239-249,共11页
Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in... Tritium,a radioactive nuclide discharged by nuclear power plants,poses challenges for removal.Continuous online monitoring of tritium in water is crucial for real-time radiation data,given its predominant existence in the environment as water.This paper presents the design,simulation,and development of a tritium monitoring device utilizing a plastic scintillation fiber(PSF)array.Experimental validation confirmed the device’s detection efficiency and minimum detectable activity.The recorded detection efficiency of the device is 1.6×10^(-3),which exceeds the theoretically simulated value of 4×10^(-4)by four times.Without shielding,the device can achieve a minimum detectable activity of 3165 Bq L^(-1)over a 1600-second measurement duration.According to simulation and experimental results,enhancing detection efficiency is possible by increasing the number and length of PSFs and implementing rigorous shielding measures.Additionally,reducing the diameter of PSFs can also improve detection efficiency.The minimum detectable activity of the device can be further reduced using the aforementioned methods. 展开更多
关键词 Tritium plastic scintillating fiber array DETECTOR
下载PDF
Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize
19
作者 Binbin Li Xianmin Chen +6 位作者 Tao Deng Xue Zhao Fang Li Bingchao Zhang Xin Wang Si Shen Shunli Zhou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期551-565,共15页
The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely de... The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely determined by the temperature conditions it is exposed to over time.Maize is the main cereal crop,and its stem growth and plant architecture are closely related to lodging resistance,and especially sensitive to temperature.However,systematic research on the timing effect of HT on the sequentially developing internode and stem is currently lacking.To identify the timing effect of HT on the morphology and plasticity of the stem in maize,two hybrids(Zhengdan 958(ZD958),Xianyu 335(XY335))characterized by distinct morphological traits in the stem were exposed to a 7-day HT treatment from the V6 to V17 stages(Vn presents the vegetative stage with n leaves fully expanded)in 2019-2020.The results demonstrated that exposure to HT during V6-V12 accelerated the rapid elongation of stems.For instance,HT occurring at V7 and V12 specifically promoted the lengths and weights of the 3rd-5th and 9th-11th internodes,respectively.Meanwhile,HT slowed the growth of internodes adjacent to the promoted internodes.Interestingly,compared with control,the plant height was significantly increased soon after HT treatment,but the promotion effect became narrower at the subsequent flowering stage,demonstrating a self-adjusting mechanism in the maize plant in response to HT.Importantly,HT altered the plant architectures,including a rising of the ear position and increase in the ear position coefficient.XY335 exhibited greater sensitivity in stem development than ZD958 under HT treatment.These findings improve our systematic understanding of the plasticity of internode and plant architecture in response to the timing of HT exposure. 展开更多
关键词 MAIZE high temperature internode growth plasticITY plant architecture
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
20
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部