期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
REE Geochemistry of Sulfides from the Huize Zn-Pb Ore Field, Yunnan Province: Implication for the Sources of Ore-forming Metals 被引量:15
1
作者 LI Wenbo HUANG Zhilong QI Liang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第3期442-449,共8页
REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with ... REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with the ~REE ranging from 1.6×10^-9 to 166.8×10^-9. Their LREE/HREE ratios range from 7.6 to 98, showing LREE enrichment relatively. The JEu values are below 1, indicating that they were deposited from an Eu-depleted and reducing fluid-system. Similar to the ore-hosting carbonate strata, calcite separates from carbonate veinlets filling in the fractures or faults crosscutting the carbonate strata also show clear Eu-depletion. This indicates that the carbonate veinlets and their parent fluid was possibly sourced from the strata and inherited the REE geochemical features of the strata. Therefore, REE-geochemical characteristics of both the sulfides and calcites, which were deposited from an ore-forming hydrothermal system, are similar to those of carbonate strata, and strongly suggest that the ore metals were mainly sourced from carbonate strata. 展开更多
关键词 Huize Zn-Pb ore field REE geochemistry SULFIDE fluid ore-forming metal
下载PDF
Ag-modified hydrogen titanate nanowire arrays for stable lithium metal anode in a carbonate-based electrolyte 被引量:1
2
作者 Zhipeng Wen Dongzheng Wu +4 位作者 Hang Li Yingxin Lin Hang Li Yang Yang Jinbao Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期282-290,共9页
In the investigation of the next-generation battery anode,Li metal has attracted increasing attention owing to its ultrahigh specific capacity and low reduction potential.However,its low columbic efficiency,limited cy... In the investigation of the next-generation battery anode,Li metal has attracted increasing attention owing to its ultrahigh specific capacity and low reduction potential.However,its low columbic efficiency,limited cycling life,and serious safety hazards have hindered the practical application of rechargeable Li metal batteries.Although several strategies have been proposed to enhance the electrochemical performance of Li metal anodes,most are centered around ether-based electrolytes,which are volatile and do not provide a sufficiently large voltage window.Therefore,we aimed to attain stable Li deposition/stripping in a commercial carbonate-based electrolyte.Herein,we have successfully synthesized hydrogen titanate(HTO)nanowire arrays decorated with homogenous Ag nanoparticles(NPs)(Ag@HTO)via simple hydrothermal and silver mirror reactions.The 3 D cross-linked array structure with Ag NPs provides preferable nucleation sites for uniform Li deposition,and most importantly,when assembled with the commercial LiNi_(0.5)Co0.2Mn_(0.3)O_(2) cathode material,the Ag@HTO could maintain a capacity retention ratio of 81.2% at 1 C after 200 cycles,however the pristine Ti foil failed to do so after only 60 cycles.Our research therefore reveals a new way of designing current collectors paired with commercial high voltage cathodes that can create high energy density Li metal batteries. 展开更多
关键词 Hydrogen titanate nanowire arrays Ag nanoparticles Li metal anode carbonate-based electrolyte
下载PDF
Mykert-Sanzheevka Field of Polycomponent Ores (Pb, Zn, Ag, Au, PGE): Geologic-Substance Characteristics and Formation Features of Ore-Forming System 被引量:2
3
作者 Alexander Vasilyevich Tatarinov Lyubov Ilyinichna Yalovik +1 位作者 Anatoly Georgievich Mironov Victor Fedorovich Posokhov 《Geomaterials》 2020年第1期1-23,共23页
The new results of geologic-structural, petrographic and mineralogic-geochemical researches of Mykert-Sanzheevka ore field—the Uda-Vitim mineragenic zone South-West ending of West Transbaikalia are given. Its main or... The new results of geologic-structural, petrographic and mineralogic-geochemical researches of Mykert-Sanzheevka ore field—the Uda-Vitim mineragenic zone South-West ending of West Transbaikalia are given. Its main ore-controlling structure, represented by losange, consisting of rhombohedral and tetrahedral blocks-duplexes mosaic clusters, which are separated by narrow tectonic sutures, is specified. It is clarified that polycomponent ores clusters are confined with these small-block sutures, made by subvolcanic dykes of shoshonite-latite volcano-plutonic association (233 - 188 million years), apodyke dynamometamorphites (breccias, cataclasite, mylonites) and also mechanometasomatites. Four stages of the dynamometamorphites formation characterized by different species compositions of ore minerals appeared as a result of mechanochemical reactions are determined. A carbonyl model of mineral microaggregates formation with films containing noble metal nanoparticles is proposed. Ore-forming system features of Mykert-Sanzheevka field are considered. 展开更多
关键词 Polycomponent ORES Dynamometamorphism Mechanometasomatites Noble metals MICROAGGREGATES NANOPHASES Trace Minerals ore-forming SYSTEM CARBONYL Compounds Geochemical Microanomalies
下载PDF
A Tip-Inhibitor Interphase Embedded with Soluble Polysulfides for High-Voltage Li Metal Batteries 被引量:1
4
作者 Xueyang Cui Jiancong Cheng +10 位作者 Chen Li Zongqiang Sun Kaixuan Li Yajing Wang Xiaoxiang Fan Shuai Tang Xiaodong Lin Ruming Yuan Bingwei Mao Mingsen Zheng Quanfeng Dong 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期157-165,共9页
The high-voltage battery has now become a goal in order to meet the demands for high energy density.However,the severe side reactions between Li metal and carbonate-based electrolytes in this system result in unstable... The high-voltage battery has now become a goal in order to meet the demands for high energy density.However,the severe side reactions between Li metal and carbonate-based electrolytes in this system result in unstable interphase,leading to non-uniform Li-ion flux and thus aggravating the dendrite growth of Li.The protect interphase,traditional solid electrolyte interface(SEI),is a loose solid layer consisted of many components,which generally does not possess the function of preventing the lithium budding.Herein,based on polysulfide solubility in ester,we proposed a strategy to eliminate the dendrite by constructing a unique SEI in which the dynamic polysulfides were in situ formed and encapsuled.For this purpose,a 2-fluorophenylsulfur pentafluoride(2-FSPF)was employed as an additive in carbonate-based electrolyte that can be decomposed electrochemically during battery operation to form such a polysulfide-rich interphase.These polysulfides with certain fluidity can adhere to dynamically the budding tip of Li metal,as a so-called tip-inhibitor,when the local current density of the tip rising,thus to hinder Li^(+)diffusion toward the tip,resulting in inhibiting the further growth of Li dendrites and leveling the Li deposition.At the current density of 1 mA cm^(-2),the average Coulombic efficiency of Li//Cu cells is as high as 98.39%during 600 cycles,and the stable cycling of Li//Li symmetric cell reaches 3500 h.Furthermore,due to the high anodic stability,the Li//high-voltage LiCoO_(2)(LCO)full cells and Li–O_(2)battery achieve excellent cycle performance with lean electrolyte. 展开更多
关键词 carbonate-based electrolyte free-dendrite high reversibility high-voltage battery lithium metal anode
下载PDF
Ore Forming Systems (Fe, Ti, Ni, Pb, Zn, Noble Metals) of the Transbaikalia Neoproterozoic Greenstone Belts
5
作者 Alexander Vasilyevich Tatarinov Lyubov Ilyinichna Yalovik 《Geomaterials》 2020年第3期66-90,共25页
It is shown that the ore-forming systems (OFS) of the Vendian-Riphean Greenstone belts (GSB) in the Transbaikalia region were formed in a wide age range: from the Riphean to the Cenozoic. They are grouped into 6 metal... It is shown that the ore-forming systems (OFS) of the Vendian-Riphean Greenstone belts (GSB) in the Transbaikalia region were formed in a wide age range: from the Riphean to the Cenozoic. They are grouped into 6 metallogenic types. The noble metal type is divided into 6 metallogenic subtypes differed in time duration intervals of functioning. OFS evolution wore multistage nature inherited from the composition of the GSB primary rocks, with a tendency of the ore generating processes remobilization and regeneration (dynamometamorphism) changing over time by rejuvenation (shoshonite latite and picrobasalt magmatism, mud volcanism). 展开更多
关键词 ore-forming Systems Noble metals Ore-Generating Processes Dynamometamorphism Age Evolution
下载PDF
The solubility of a metallic mineral with other coexisting minerals and the ore-forming processes of metallic sulfides 被引量:2
6
作者 岑况 於崇文 《Science China Earth Sciences》 SCIE EI CAS 2001年第4期289-297,共9页
Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a miner... Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a mineral with coexisting rock-forming minerals leads to particular geochemical be-havior. The concept of solubility of a metallic mineral with coexisting rock-forming minerals and its theory and model of calculation are put forward. Taking Tianmashan Cu-Au ore deposit of sulfide minerals in Tongling district as an example, solubilities of some metallic minerals with other coex-isting minerals, such as pyrite or chalcopyrite with quartz (representing sandstone) or calcite (rep-resenting limestone), are calculated. The results show the mechanism of ore-forming processes. As the ore-forming fluid flows through sandstone, it dissolves pyrite in the sandstone at first, then transports the iron and sulfur to the interface between sandstone and limestone and eventually precipitates them on the interface. 展开更多
关键词 metalLIC mineral coexisting MINERAL solubility ore-forming process.
原文传递
H-O-S-Cu-Pb Isotopic Constraints on the Origin of the Nage Cu-Pb Deposit, Southeast Guizhou Province, SW China 被引量:7
7
作者 ZHOU Jiaxi WANG Jingsong +1 位作者 YANG Dezhi LIU Jinhai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第5期1334-1343,共10页
The Nage Cu-Pb deposit, a new found ore deposit in the southeast Guizhou province, southwest China, is located on the southwestern margin of the Jiangnan Orogenic Belt. Ore bodies are hosted in slate and phyllite of N... The Nage Cu-Pb deposit, a new found ore deposit in the southeast Guizhou province, southwest China, is located on the southwestern margin of the Jiangnan Orogenic Belt. Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations, and are structurally controlled by EW-trending fault. It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb. Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks. The ore minerals include chalcopyrite, galena and pyrite, and gangue minerals are quartz, sericite and chlorite. The H-O isotopic compositions of quartz, S-Cu-Pb isotopic compositions of sulfide minerals, Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit. The oSCUNBs values of chalcopyrite range from -0.09% to +0.33%0, similar to basic igneous rocks and chalcopyrite from magmatic deposits. J6SCUNBS values of chalcopyrite from the early, middle and final mineralization stages show an increasing trend due to 63Cu prior migrated in gas phase when fluids exsolution from magma, ja4ScDT values of sulfide minerals range from -2.7‰ to +2.8‰, similar to mantle-derived sulfur (0±3‰). The positive correlation between J65CUNBs and ja4SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma. JDu2o- SMOW and JlSOH2O-SMOW values of water in fluid inclusions of quartz range from -60.7‰ to -44.4‰ and +7.9‰ to +9.0%0 (T=260℃), respectively and fall in the field for magmatic and metamorphic waters, implicating that mixed sources for H20 in hydrothermal fluids. Ores and sulfide minerals have a small range of Pb isotopic compositions (208Pb/204pb=38.152 to 38.384, 207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve, and similar to Neoproterozoic host rocks (208Pb/204Pb=38.201 to 38.6373, 207pb/204pb=15.648 to 15.673 and 206pb/204pb=17.820 to 18.258), but higher than diabase (208Pb/204pb=37.830 to 38.012, 207pb/204pb=15.620 to 15.635 and 206pb/204pb=17.808 to 17.902). These results imply that the Pb metal originated mainly from host rocks. The H-O-S-Cu-Pb isotopes tegather with geology, indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type. 展开更多
关键词 H-O-S-Cu-Pb isotopes sources of ore-forming fluids and metals ore genesis Nage Cu-Pbdeposit SW China
下载PDF
Geology and Isotope Geochemistry of the Yinchanggou-Qiluogou Pb-Zn Deposit,Sichuan Province,Southwest China 被引量:5
8
作者 LI Bo ZHOU Jiaxi +2 位作者 LI Yingshu CHEN Aibing WANG Ruixue 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第5期1768-1779,共12页
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-tren... The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD(H2O-SMOW) and δ18O(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ13C(PDB) values ranging from-6.2‰ to-4.1‰ and δ18O(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ34S(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates. 展开更多
关键词 C-H-O-S-Pb isotopes source of ore-forming fluids and metals the Yinchanggou-QiluogouPb-Zn deposit southwest China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部