Nanocrystal carbonated hydroxyapatite was prepared by lecithin-controlled chemical precipitation in synthetic body fluid (SBF). The reactant was aged and heated at 850℃ for crystallization. The morphology and mic...Nanocrystal carbonated hydroxyapatite was prepared by lecithin-controlled chemical precipitation in synthetic body fluid (SBF). The reactant was aged and heated at 850℃ for crystallization. The morphology and microstructure of the carbonated hydroxyapatite were investigated using transmission electron microscope (TEM), X-ray diffraction ( XRD ) and FTIR. The experimental results demonstrate that the shapes of carbonated hydroxyapdtite particles display spheres with the average size of 20- 28 nm, and carbonated hydroxyapatite contained carbonate ions, similar to mineral of bone tissues.展开更多
The syntheses of nanosized carbonated hydroxyapatite (CHA) were performed by comparing dropwise and direct pouring of acetone solution of Ca(NO3)2·4H2O into mixture of (NH4)2HPO4 and NH4HCO3 at room tempera...The syntheses of nanosized carbonated hydroxyapatite (CHA) were performed by comparing dropwise and direct pouring of acetone solution of Ca(NO3)2·4H2O into mixture of (NH4)2HPO4 and NH4HCO3 at room temperature controlled at pH 11. Direct pouring method was later applied to study the increment of carbonate content in syntheses. The as-synthesized powders were characterized by various characterization techniques. The crystallographic results of the produced powders were obtained from X-ray diffraction analysis, whilst the carbonate content in the produced powders was determined by the CHNS/O elemental analyzer. Fourier transform infrared analysis confirmed that the CHA powders formed were B-type. Field emission scanning electron microscopy revealed that the powders were highly agglomerated in nanosized range and hence energy filtered transmission electron microscopy was employed to show elongated particles which decreased with increasing carbonate content.展开更多
Prickly carbonated hydroxyapatite(CHAp) spheres were obtained via a facile template-free self-assembly method with Na2HPO4 and self-made cubic CaCO3 as reactants. X-ray diffraction results of the product revealed CH...Prickly carbonated hydroxyapatite(CHAp) spheres were obtained via a facile template-free self-assembly method with Na2HPO4 and self-made cubic CaCO3 as reactants. X-ray diffraction results of the product revealed CHAp with high crystallinity could be successfully prepared in a short reaction time. A nucleation mechanism was proposed according to the results of characterizing the resultant powders and analyzing the growth process. It shows that the self-made CaCO3 particles play an important role in the template-free synthesis of prickly spheres.展开更多
Hierarchically nanostructured porous carbonated hydroxyapatite coatings (HNPCs) on Ti6Al4V substrate were fabricated by a two-stage application route: fabrication of nacre coatings (NCs) on Ti6Al4V substrate by electr...Hierarchically nanostructured porous carbonated hydroxyapatite coatings (HNPCs) on Ti6Al4V substrate were fabricated by a two-stage application route: fabrication of nacre coatings (NCs) on Ti6Al4V substrate by electrophoretic technique, and conversion of NCs to HNPCs in a phosphate buffer solution (PBS) by microwave irradiation method. Their samples were characterized by using XRD, FT-IR, SEM, TEM, and N2 adsorption-desorption isotherms. The results show that the microwave irradiation technique improves obviously the conversion rate of NCs to HNPCs as compared with conventional method. After soaking the NCs in the PBS, calcium ions are released from the nacre particles and react with phosphate ions to form carbonated hydroxyapatite nanoparticles. These nanoparticles aggregate to form the plate-like carbonated apatite. The mesopores with a size of about 3.9 nm and macropores with the diameters of 1~4μm exist within and among the carbonated apatite plates, respectively. Simulated body fluid immersion tests reveal that the HNPCs have a good in vitro bioactivity.展开更多
Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioacti...Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioactiv-ityregardingbonedefectregeneration.Inthisstudy,wesynthesizedsilver(Ag)-dopedCNT/HAP(CNT/Ag-HAP)nanohybrids via the partial replacing of calcium ions(Ca2+)in the HAP lattice with silver ions(Ag+)using an ion doping technique under hydrothermal conditions.Specifically,the doping process was induced using the special lattice structure of HAP and the abundant surface oxygenic functional groups of CNT,and involved the partial replacement of Ca2+in the HAP lattice by doped Ag+as well as the in situ synthesis of Ag-HAP nanoparticles on CNT in a hydrothermal environment.The result-ing CNT/Ag-HAP nanohybrids were then introduced into a PLLA matrix via laser-based powder bed fusion(PBF-LB)to fabricate PLLA/CNT/Ag-HAP scaffolds that showed sustained antibacterial activity.We then found that Ag+,which pos-sesses broad-spectrum antibacterial activity,endowed PLLA/CNT/Ag-HAP scaffolds with this activity,with an antibacterial effectiveness of 92.65%.This antibacterial effect is due to the powerful effect of Ag+against bacterial structure and genetic material,as well as the physical destruction of bacterial structures due to the sharp edge structure of CNT.In addition,the scaffold possessed enhanced mechanical properties,showing tensile and compressive strengths of 8.49 MPa and 19.72 MPa,respectively.Finally,the scaffold also exhibited good bioactivity and cytocompatibility,including the ability to form apatite layers and to promote the adhesion and proliferation of human osteoblast-like cells(MG63 cells).展开更多
A systematic research was performed about diffusion kinetics of adsorbing F^- dissolved in water for carbonate hydroxyapatite (CHAP) from the natural hydroxyapatite which was modified by adulterating with CO3^2-. Th...A systematic research was performed about diffusion kinetics of adsorbing F^- dissolved in water for carbonate hydroxyapatite (CHAP) from the natural hydroxyapatite which was modified by adulterating with CO3^2-. The result shows that the speed of F^- adsorption is controlled by membrane diffusion when F^- concentration is relatively low, which is expressed by the kinetic equation of diffusion Q=0.0005(Ci-C)(t-ti)+0.3967, or by vacancy diffusion when F^- concentration is relatively high, which is expressed by the kinetic equation of diffusion In[C(o, t)]=8.4718-0.5048Int. Based on the feature of CHAP for adsorbing F^- dissolved in water and its special channel of the structure of CO3^3- modified hydroxyapatite, models of vacancy diffusion and membrane diffusion were established.展开更多
Kinetics and mechanisms on the removal of aqueous lead ion by carbonate hydroxyapatite (CHap) are investigated in the present work. Experimental results show that, in the whole pH range, the lead removal percentage ...Kinetics and mechanisms on the removal of aqueous lead ion by carbonate hydroxyapatite (CHap) are investigated in the present work. Experimental results show that, in the whole pH range, the lead removal percentage increases with decreasing pH values and reaches a maximum at pH=2-3. Under some conditions, the lead residual concentration is below national integrated wastewater discharge standard, even drinking water standard. The removal behavior is a complicated non-homogeneous solid/liquid reaction, which can be described by two stages from kinetic point of view. At the earlier stage, reaction rate is so fast that its kinetic course is intricate, which requires further study. At the latter stage, the rate of reaction becomes slow and the process of reaction accords with one order reaction kinetic equation. Experimental results show that the relationship between reaction rate constant k1 and temperature T accords to Arrhenius Equation, and the activation energy of sorption (Ea) is 11.93 kJ/mol and frequency factor (A) is 2.51 s^-1. X-ray diffraction (XRD), scanning electron microscopy with an energy dispersive X-ray fluoresence spectrometer (SEM-EDS) and toxicity characteristic leaching procedure (TCLP) test were conducted in this work. It is indicated that the main mechanism is dissolution-precipitation, accompanying with superficial sorption.展开更多
Scaffolds with multimodal pore structure are essential to cells differentiation and proliferation in bone tissue engineering. Bi-/multi-modal porous PLGA/hydroxyapatite composite scaffolds were prepared by supercritic...Scaffolds with multimodal pore structure are essential to cells differentiation and proliferation in bone tissue engineering. Bi-/multi-modal porous PLGA/hydroxyapatite composite scaffolds were prepared by supercritical C02 foaming in which hydroxyapatite acted as heterogeneous nucleation agent. Bimodal porous scaffolds were prepared under certain conditions, i.e. hydroxyapatite addition of 5%, depressurization rate of 0.3 MPa. min-1, soaking temperature of 55 ℃, and pressure of 9 MPa. And scaffolds presented specific structure of small pores (122 μM ± 66 μm) in the cellular walls of large pores (552 μm ±127 μm). Furthermore, multimodal porous PLGA scaffolds with micro-pores (37 μM ± 11μM) were obtained at low soaking pressure of 7.5 MPa. The interconnected porosity of scaffolds ranged from (52.53 ± 2.69)% to (83.08±2.42)% by adjusting depressurization rate, while compression modulus satisfied the requirement of bone tissue engineering. Solvent-free CO2 foaming method is promising to fabricate bi-/multi-modal porous scaffolds in one step, and bioactive particles for osteogenesis could serve as nucleation agents.展开更多
The ultrafine structure of tendons deposits formed in three patients, males aged 52 and 61 years and a female aged 71 years were evaluated by atomic force microscopy. Three distinctly different structures of deposit s...The ultrafine structure of tendons deposits formed in three patients, males aged 52 and 61 years and a female aged 71 years were evaluated by atomic force microscopy. Three distinctly different structures of deposit surface were identified: (i) compact, smooth and uneven surface composed of closely packed nanoparticles of diameter 30 nm;(ii) surfaces consisting of plate-like crystalline particles about 30 nm thick that formed larger entities divided by deep depressions;(iii) rough surface formed by individual or closely attached elongated needle-like particles with elliptical cross-section of diameter about 30 nm. These surface structures were developed by different formation mechanisms: (i) Aggregation of Posner’s clusters into nanoparticles formed on biological calcific able surfaces and in the bulk of body fluid surrounding the deposits that subsequently settled onto the deposit surface;(ii) Regular crystal growth on surface nuclei generated at low supersaturation of body fluid with respect to the phosphatic phase and/or in a narrow cavity containing a very limited volume of liquid;(iii) Solution mediated re-crystallization of the upper layers of a deposit or unstable crystalline growth governed by volume diffusion of building units to the particle tip. Small rods, 40 nm wide and from 100 to 300 nm long, with no apparent order were detected only on the surface of deposit formed in the female patient. These rods could be debris of collagen fibres that disintegrated into individual building units (macromolecules) with some showing breakdown into smaller fragments.展开更多
Cesium carbonate supported on hydroxyapatite coated Nio.sZno.sFe2O4 magnetic nanoparticles (Nio.sZno.sFe2O4@Hap-Cs2CO3) was found to be magnetically separable, highly efficient, green and recyclable heterogeneous ca...Cesium carbonate supported on hydroxyapatite coated Nio.sZno.sFe2O4 magnetic nanoparticles (Nio.sZno.sFe2O4@Hap-Cs2CO3) was found to be magnetically separable, highly efficient, green and recyclable heterogeneous catalyst. The synthesized nanocatalyst has been characterized with several methods (FT-IR, SEM, TEM, XRD and XRF) and these analyzes confirmed which the cesium carbonate is well supported to catalyst surface. After full characterization, its catalytic activity was investigated in the synthesis of pyranopyrazole derivatives and the reactions were carried out at room temperature in 50:50 water/ethanol with excellent yields (88-95%). More importantly, the Nio.5Zno.sFe204@Hap-Cs2CO3 was easily separated from the reaction mixture by external magnetic field and efficiently reused at least six runs without any loss of its catalytic activity. Thus, the developed nanomagnetic base catalyst is potentially useful for the green and economic production of organic compounds.展开更多
文摘Nanocrystal carbonated hydroxyapatite was prepared by lecithin-controlled chemical precipitation in synthetic body fluid (SBF). The reactant was aged and heated at 850℃ for crystallization. The morphology and microstructure of the carbonated hydroxyapatite were investigated using transmission electron microscope (TEM), X-ray diffraction ( XRD ) and FTIR. The experimental results demonstrate that the shapes of carbonated hydroxyapdtite particles display spheres with the average size of 20- 28 nm, and carbonated hydroxyapatite contained carbonate ions, similar to mineral of bone tissues.
基金Universiti Sains Malaysia for the USM FellowshipUSM-RU-PGRS(8033006)for the financial support
文摘The syntheses of nanosized carbonated hydroxyapatite (CHA) were performed by comparing dropwise and direct pouring of acetone solution of Ca(NO3)2·4H2O into mixture of (NH4)2HPO4 and NH4HCO3 at room temperature controlled at pH 11. Direct pouring method was later applied to study the increment of carbonate content in syntheses. The as-synthesized powders were characterized by various characterization techniques. The crystallographic results of the produced powders were obtained from X-ray diffraction analysis, whilst the carbonate content in the produced powders was determined by the CHNS/O elemental analyzer. Fourier transform infrared analysis confirmed that the CHA powders formed were B-type. Field emission scanning electron microscopy revealed that the powders were highly agglomerated in nanosized range and hence energy filtered transmission electron microscopy was employed to show elongated particles which decreased with increasing carbonate content.
文摘Prickly carbonated hydroxyapatite(CHAp) spheres were obtained via a facile template-free self-assembly method with Na2HPO4 and self-made cubic CaCO3 as reactants. X-ray diffraction results of the product revealed CHAp with high crystallinity could be successfully prepared in a short reaction time. A nucleation mechanism was proposed according to the results of characterizing the resultant powders and analyzing the growth process. It shows that the self-made CaCO3 particles play an important role in the template-free synthesis of prickly spheres.
基金Supported by National Natural Science Foundation of China (No.51002095)Innovation Foundation of Shanghai Education Committee (No.11YZ86)
文摘Hierarchically nanostructured porous carbonated hydroxyapatite coatings (HNPCs) on Ti6Al4V substrate were fabricated by a two-stage application route: fabrication of nacre coatings (NCs) on Ti6Al4V substrate by electrophoretic technique, and conversion of NCs to HNPCs in a phosphate buffer solution (PBS) by microwave irradiation method. Their samples were characterized by using XRD, FT-IR, SEM, TEM, and N2 adsorption-desorption isotherms. The results show that the microwave irradiation technique improves obviously the conversion rate of NCs to HNPCs as compared with conventional method. After soaking the NCs in the PBS, calcium ions are released from the nacre particles and react with phosphate ions to form carbonated hydroxyapatite nanoparticles. These nanoparticles aggregate to form the plate-like carbonated apatite. The mesopores with a size of about 3.9 nm and macropores with the diameters of 1~4μm exist within and among the carbonated apatite plates, respectively. Simulated body fluid immersion tests reveal that the HNPCs have a good in vitro bioactivity.
基金the National Natural Science Foundation of China(Nos.52275393 and 51935014)Hunan Provincial Natural Science Foundation of China(Nos.2021JJ20061,2020JJ3047,and 2019JJ50588)+4 种基金Jiangxi Provincial Natural Science Foundation of China(No.20224ACB204013)the Project of State Key Laboratory of High Performance Complex ManufacturingTechnology Innovation Platform Project of Shenzhen Institute of Information Technology 2020(No.PT2020E002)Guangdong Province Precision Manufacturing and Intelligent Production Education Integration Innovation Platform(No.2022CJPT019)Independent Exploration and Innovation Project of Central South University(No.1053320220553).
文摘Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioactiv-ityregardingbonedefectregeneration.Inthisstudy,wesynthesizedsilver(Ag)-dopedCNT/HAP(CNT/Ag-HAP)nanohybrids via the partial replacing of calcium ions(Ca2+)in the HAP lattice with silver ions(Ag+)using an ion doping technique under hydrothermal conditions.Specifically,the doping process was induced using the special lattice structure of HAP and the abundant surface oxygenic functional groups of CNT,and involved the partial replacement of Ca2+in the HAP lattice by doped Ag+as well as the in situ synthesis of Ag-HAP nanoparticles on CNT in a hydrothermal environment.The result-ing CNT/Ag-HAP nanohybrids were then introduced into a PLLA matrix via laser-based powder bed fusion(PBF-LB)to fabricate PLLA/CNT/Ag-HAP scaffolds that showed sustained antibacterial activity.We then found that Ag+,which pos-sesses broad-spectrum antibacterial activity,endowed PLLA/CNT/Ag-HAP scaffolds with this activity,with an antibacterial effectiveness of 92.65%.This antibacterial effect is due to the powerful effect of Ag+against bacterial structure and genetic material,as well as the physical destruction of bacterial structures due to the sharp edge structure of CNT.In addition,the scaffold possessed enhanced mechanical properties,showing tensile and compressive strengths of 8.49 MPa and 19.72 MPa,respectively.Finally,the scaffold also exhibited good bioactivity and cytocompatibility,including the ability to form apatite layers and to promote the adhesion and proliferation of human osteoblast-like cells(MG63 cells).
基金the key scientific foundation(No.2001Z20004)the Hubei Provincial Department of Education and the natural science foundation(2005ABA024)
文摘A systematic research was performed about diffusion kinetics of adsorbing F^- dissolved in water for carbonate hydroxyapatite (CHAP) from the natural hydroxyapatite which was modified by adulterating with CO3^2-. The result shows that the speed of F^- adsorption is controlled by membrane diffusion when F^- concentration is relatively low, which is expressed by the kinetic equation of diffusion Q=0.0005(Ci-C)(t-ti)+0.3967, or by vacancy diffusion when F^- concentration is relatively high, which is expressed by the kinetic equation of diffusion In[C(o, t)]=8.4718-0.5048Int. Based on the feature of CHAP for adsorbing F^- dissolved in water and its special channel of the structure of CO3^3- modified hydroxyapatite, models of vacancy diffusion and membrane diffusion were established.
文摘Kinetics and mechanisms on the removal of aqueous lead ion by carbonate hydroxyapatite (CHap) are investigated in the present work. Experimental results show that, in the whole pH range, the lead removal percentage increases with decreasing pH values and reaches a maximum at pH=2-3. Under some conditions, the lead residual concentration is below national integrated wastewater discharge standard, even drinking water standard. The removal behavior is a complicated non-homogeneous solid/liquid reaction, which can be described by two stages from kinetic point of view. At the earlier stage, reaction rate is so fast that its kinetic course is intricate, which requires further study. At the latter stage, the rate of reaction becomes slow and the process of reaction accords with one order reaction kinetic equation. Experimental results show that the relationship between reaction rate constant k1 and temperature T accords to Arrhenius Equation, and the activation energy of sorption (Ea) is 11.93 kJ/mol and frequency factor (A) is 2.51 s^-1. X-ray diffraction (XRD), scanning electron microscopy with an energy dispersive X-ray fluoresence spectrometer (SEM-EDS) and toxicity characteristic leaching procedure (TCLP) test were conducted in this work. It is indicated that the main mechanism is dissolution-precipitation, accompanying with superficial sorption.
基金Support by the National Natural Science Foundation of China(21276225,21476196)
文摘Scaffolds with multimodal pore structure are essential to cells differentiation and proliferation in bone tissue engineering. Bi-/multi-modal porous PLGA/hydroxyapatite composite scaffolds were prepared by supercritical C02 foaming in which hydroxyapatite acted as heterogeneous nucleation agent. Bimodal porous scaffolds were prepared under certain conditions, i.e. hydroxyapatite addition of 5%, depressurization rate of 0.3 MPa. min-1, soaking temperature of 55 ℃, and pressure of 9 MPa. And scaffolds presented specific structure of small pores (122 μM ± 66 μm) in the cellular walls of large pores (552 μm ±127 μm). Furthermore, multimodal porous PLGA scaffolds with micro-pores (37 μM ± 11μM) were obtained at low soaking pressure of 7.5 MPa. The interconnected porosity of scaffolds ranged from (52.53 ± 2.69)% to (83.08±2.42)% by adjusting depressurization rate, while compression modulus satisfied the requirement of bone tissue engineering. Solvent-free CO2 foaming method is promising to fabricate bi-/multi-modal porous scaffolds in one step, and bioactive particles for osteogenesis could serve as nucleation agents.
基金This study was supported by a grant from the University of the Balearic Islands and by project CTQ2010-18271/PPQ from the Ministerio de Ciencia e Innovación(Gobierno de Espana),FEDER funds(European Union)the project grant 9/2011 from the Conselleria d’Educació,Cultura i Universitat(Govern de les Illes Balears).
文摘The ultrafine structure of tendons deposits formed in three patients, males aged 52 and 61 years and a female aged 71 years were evaluated by atomic force microscopy. Three distinctly different structures of deposit surface were identified: (i) compact, smooth and uneven surface composed of closely packed nanoparticles of diameter 30 nm;(ii) surfaces consisting of plate-like crystalline particles about 30 nm thick that formed larger entities divided by deep depressions;(iii) rough surface formed by individual or closely attached elongated needle-like particles with elliptical cross-section of diameter about 30 nm. These surface structures were developed by different formation mechanisms: (i) Aggregation of Posner’s clusters into nanoparticles formed on biological calcific able surfaces and in the bulk of body fluid surrounding the deposits that subsequently settled onto the deposit surface;(ii) Regular crystal growth on surface nuclei generated at low supersaturation of body fluid with respect to the phosphatic phase and/or in a narrow cavity containing a very limited volume of liquid;(iii) Solution mediated re-crystallization of the upper layers of a deposit or unstable crystalline growth governed by volume diffusion of building units to the particle tip. Small rods, 40 nm wide and from 100 to 300 nm long, with no apparent order were detected only on the surface of deposit formed in the female patient. These rods could be debris of collagen fibres that disintegrated into individual building units (macromolecules) with some showing breakdown into smaller fragments.
基金Islamic Azad University,Bandar Abbas Branch for financial support
文摘Cesium carbonate supported on hydroxyapatite coated Nio.sZno.sFe2O4 magnetic nanoparticles (Nio.sZno.sFe2O4@Hap-Cs2CO3) was found to be magnetically separable, highly efficient, green and recyclable heterogeneous catalyst. The synthesized nanocatalyst has been characterized with several methods (FT-IR, SEM, TEM, XRD and XRF) and these analyzes confirmed which the cesium carbonate is well supported to catalyst surface. After full characterization, its catalytic activity was investigated in the synthesis of pyranopyrazole derivatives and the reactions were carried out at room temperature in 50:50 water/ethanol with excellent yields (88-95%). More importantly, the Nio.5Zno.sFe204@Hap-Cs2CO3 was easily separated from the reaction mixture by external magnetic field and efficiently reused at least six runs without any loss of its catalytic activity. Thus, the developed nanomagnetic base catalyst is potentially useful for the green and economic production of organic compounds.