Water scarcity and pollution pose a threat to the sustainable development of cities and society.Therefore,it is crucial to analyze the hydrochemical characteristics and carbon dynamics of waterdeficient areas.Taking t...Water scarcity and pollution pose a threat to the sustainable development of cities and society.Therefore,it is crucial to analyze the hydrochemical characteristics and carbon dynamics of waterdeficient areas.Taking the Taiyuan section of Fenhe River as the research object,we systematically explored the hydrochemical characteristics of surface water and its evolutionary processes,as well as the ecological effect of algal carbonic anhydrase in carbon cycle using the hydrochemical evolution method and correlation analysis.The ternary diagram demonstrates that the main water chemical type in Fenhe River was SO^(2-)_(4)·Cl^(-)-Na^(+).The Gibbs and end-member diagrams of each ion display that the chemical composition of surface water was mainly controlled by silicate decomposition.The chemical ions originated mainly from dissolution of some minerals,such as plagioclase,halite,dolomite,calcite,and gypsum.The diatoms had a lower CO_(2)requirement because they exhibited a higher abundance at a lower partial pressure of CO_(2)(p CO_(2)).However,high CO_(2)concentration had a positive effect on cyanobacteria,which reduced the active transport of HCO_(3)^(-),saved the energy needed for this part of active transport,and indirectly improved the overall photosynthetic efficiency of algae.Carbonic anhydrase(CA)activity was significantly negatively correlated with p CO_(2)and positively correlated with HCO_(3)^(-)concentration,indicating that CA in water promoted the conversion of CO_(2)to HCO_(3)^(-).The HCO_(3)^(-)generated from this process continued to participate in the erosion of silicate rocks,sequestering CO_(2)in the form of Ca CO_(3),which has a non-negligible impact on the carbon sink in the Fenhe River.These consequences may have important implications for the biogeochemical cycling occurring in urban water.展开更多
The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determining in carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze ...The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determining in carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze the CO2 conversion process in dissolution experiments of limestone and dolomite. It was found that the rate of dissolution increases by a factor of about 10 after the addition of CA at a high CO2 partial pressure (Pco2) for limestone and about 3 at low Pco2 for dolomite. This shows that reappraisal is necessary for the importance of chemical weathering (including carbonate rock dissolution and silicate weathering) in the atmospheric CO2 sink and the mysterious missing sink in carbon cycling. It is doubtless that previous studies of weathering underestimated weathering rates due to the ignorance of CA as an activator in weathering, thus the contribution of weathering to the atmospheric CO2 sink is also underestimated. This finding also shows the need to examine the situ distribution and activity of CA in different waters and to investigate the role of CA in weathering.展开更多
AIM:To analyze possible relationships between CA IX/ CA XII and pVHL expression in normal and neoplastic colorectal mucosa. METHODS: Immunohistochemical staining of 42 tissue specimens obtained from 17 cancer patients...AIM:To analyze possible relationships between CA IX/ CA XII and pVHL expression in normal and neoplastic colorectal mucosa. METHODS: Immunohistochemical staining of 42 tissue specimens obtained from 17 cancer patients was performed to evaluate the distribution and semi-quantitatively assess the levels of CA IX, CA XII and pVHL. VHL mRNAs from 14 fresh-frozen tumors was amplified by RT-PCR and subjected to sequencing. CA9 and G412mRNA levels were analyzed by semi-quantitative RT-PCR in comparison with VEGFas an indicator of hypoxia that uncouples the pVHL control. RESULTS: Tumor tissues were associated with a borderline increase of CA IX staining signal and slight but significant decrease of CA XII immunoreactivity, whereas no association was found for pVHL. Sequence analysis of RT-PCR-amplified VHL mRNAs revealed no deletions/ mutations, suggesting that they were VHL-competent. We did not observe any correlation between pVHL and CA IX/CA XII proteins as well as between MEGFand CA9 mRNAs, but the tumor-associated changes in mRNA levels of VEGFand CA12 showed a significant inverse relationship. CONCLUSION: Our results indicate that CA9and CA12 are regulated by different intratumoral factors and that lack of apparent relationship between the levels of CA IX/CA XII and pVHL cannot be fully assigned to uncoupling of negative regulatory function of pVHL by tumor hypoxia signified by induced VEGF transcription. The interplay between the functional pVHL and CA IX/CA XII in colorectal tumors seems rather complex and is not evident merely at the expression levels.展开更多
Carbonic anhydrase(CA)as a typical metalloenzyme in biological system can accelerate the hydration/dehydration of carbon dioxide(CO2,the major components of greenhouse gases),which performer with high selectivity,envi...Carbonic anhydrase(CA)as a typical metalloenzyme in biological system can accelerate the hydration/dehydration of carbon dioxide(CO2,the major components of greenhouse gases),which performer with high selectivity,environmental friendliness and superior efficiency.However,the free form of CA is quite expensive(~RMB 3000/100 mg),unstable,and non-reusable as the free form of CA is not easy for recovery from the reaction environment,which severely limits its large-scale industrial applications.The immobilization may solve these problems at the same time.In this context,many efforts have been devoted to improving the chemical and thermal stabilities of CA through immobilization strategy.Very recently,a wide range of available inorganic,organic and hybrid compounds have been explored as carrier materials for CA immobilization,which could not only improve the tolerance of CA in hazardous environments,but also improve the efficiency and recovery to reduce the cost of large-scale application of CA.Several excellent reviews about immobilization methods and application potential of CA have been published.By contrast,in our review,we stressed on the way to better retain the biocatalytic activity of immobilized CA system based on different carrier materials and to solve the problems facing in practical operations well.The concluding remarks are presented with a perspective on constructing efficient CO2 conversion systems through rational combining CA and advanced carrier materials.展开更多
Carbonic anhydrases (CAs) catalyse the hydration of C02 to bicarbonate at physiological pH. This chemical interconversion is crucial since HCO3- is the substrate for several biosynthetic reactions. This review is focu...Carbonic anhydrases (CAs) catalyse the hydration of C02 to bicarbonate at physiological pH. This chemical interconversion is crucial since HCO3- is the substrate for several biosynthetic reactions. This review is focused on the distribution and role of CA isoenzymes in both normal and pathological gastrointestinal (GI) tract tissues. It has been known for many years that CAs are widely present in the GI tract and play important roles in several physiological functions such as production of saliva, gastric acid, bile, and pancreatic juice as well as in absorption of salt and water in intestine. New information suggests that these enzymes participate in several processes that were not envisioned earlier. Especially, the recent reports on plasma membrane-bound isoenzymes IX and XII have raised considerable interest since they were reported to participate in cancer invasion and spread. They are induced by tumour hypoxia and may also play a role in von Hippel-Lindau (VHL)-mediated carcinogenesis.展开更多
Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaC1. These features of D. salina make it an ideal host for the production of ant...Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaC1. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase (CAH) gene ofD. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.展开更多
A carbonic anhydrase( CA) transcript was obtained from the Contig library according to the published sequencing information of the buckwheat transcripts. The full length of the CA gene was amplified by reverse transcr...A carbonic anhydrase( CA) transcript was obtained from the Contig library according to the published sequencing information of the buckwheat transcripts. The full length of the CA gene was amplified by reverse transcription PCR( RT-PCR). The bioinformatics analysis showed that the full length of Fs CA1 gene was 1233 bp and open reading frame was 978 bp,and encoding 325 amino acids. The molecular weight was 35. 11 ku and the isoelectric point was 7. 59; there were 9 α helices,6 β folds,many randon coil and extension chain,containing one signal peptide and one transmembrane region,having a 2 amino acid conserved domains with typical beta-type carbonic anhydrase. Subcellular localization showed that the protein is most likely to appear in the chloroplast. The three-dimensional structure model of Fs CA1 was built by homologous modeling method,indicating that the homo-octamer of buckwheat CA and pea CA could match well,so it can be inferred that buckwheat CA is also homo-octamer. Real-time quantitative PCR was used to detect the expression of Fs CA1 in different organs of buckwheat.The results showed that Fs CA1 had the highest expression level in leaves,then in the stems,and the lowest in roots.展开更多
Many cancer cells in solid tumors are hypoxic or pseudohypoxic and create acidic environment for malignancy progression. Under low oxygen conditions (hypoxia), hypoxia-inducible factors (HIFs) play pathological roles ...Many cancer cells in solid tumors are hypoxic or pseudohypoxic and create acidic environment for malignancy progression. Under low oxygen conditions (hypoxia), hypoxia-inducible factors (HIFs) play pathological roles in cancer cell survival and spreading. HIF regulates several genes such as genes of glucose transporters that enhance anaerobic glycolysis, angiogenesis, erythropoiesis and carbonic anhydrase IX (CA-IX). CA-IX is a cell-surface glycoprotein that catalyzes the hydration of CO2 to protons and bicarbonate ions (respiratory acidification). This process is involved in adaptation to acidosis and implicated in cancer progression. Therefore, CA-IX inhibitors (such as sulfonamide-based compounds) showed hoping results in reduction malignancy progression. The article aims to reversal the malignant hypoxic environment in solid tumors to create a condition of weakness within the cancer for further focused cisplatin potency. This article suggests the use of modified synthesized HIF as a drug delivery molecule for both carbonic anhydrase IX inhibitor and glycosylated cisplatin that damages the DNA of malignant cell. HIF molecule has high affinity to bind with CA IX-expressing malignant cells, which is followed by cell entrance via endocytosis. Once the HIF-Cisplatin-CA-inhibitor complex enters the cell, the carbonic anhydrase inhibitor will improve the cellular pH that makes the environment unsuitable for HIF 1α function and it may be ubiquitinated. So, the raise in target genes transcription will be arrested. On the other hand, once the synthetized HIF is degraded, the cisplatin molecules will be released inside the malignant cell and start to damage its DNA. This approach may be a good solution for many solid tumors.展开更多
Carbonic anhydrase (CA) is a kind of zinc enzyme that reversibly catalyzes hydration of CO2. Sixteen CAisoenzymes have been described in mammals . These isozymes play physiological roles in erythrocytes, including C...Carbonic anhydrase (CA) is a kind of zinc enzyme that reversibly catalyzes hydration of CO2. Sixteen CAisoenzymes have been described in mammals . These isozymes play physiological roles in erythrocytes, including CO2 transport, ion secretion, pH regulation and so forth. CA1 and 2 are both cytosolic enzymes that are found in large quantities in erythrocytes. Excluding hemoglobin, CA I is the most abundant protein in erythrocytes展开更多
Background: Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the reversible hydration of CO<sub>2</sub> to and H<sup>+</sup>. CA plays a crucial role in CO<sub>2</sub>...Background: Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the reversible hydration of CO<sub>2</sub> to and H<sup>+</sup>. CA plays a crucial role in CO<sub>2</sub> transport, acid-base balance, and in linking local acidosis to O<sub>2</sub> unloading from hemoglobin and also facilitates lactate shuttling across the monocarboxylate transporters (MCT). The study aimed to investigate the influence of hyperglycemia on erythrocyte carbonic anhydrase activity and lactic acid in type II diabetic patients. Method: Red blood cell carbonic anhydrase activity was determined in washed lysed-hemolysate by the action of the enzyme on the substrate p-nitrophenyl acetate. The absorbance of released p-nitrophenol was recorded at 345 nm. Glycated Hemoglobin was determined by ion exchange method (Spectrum Diagnostic Kit). Blood glucose, lactate, cholesterol and triglyceride were determined using Accutrend GCT meter (Roche, Germany) with cobias<sup>®</sup> test strips. Results: The present study showed that hyperglycemia significantly (p < 0.05) increased both erythrocyte carbonic anhydrase activity and blood lactate level in type II diabetic patients. Conclusion: We may conclude that hyperglycemia may be responsible for the increased activity of carbonic anhydrase activity and blood lactate concentration.展开更多
Objective To evaluate the prognostic significance of carbonic anhydrase IX ( CA IX) expression in patients with clear cell renal cell carcinoma ( ccRCC) . Methods CA IX excression in a cohort of 120 patients with ccRC...Objective To evaluate the prognostic significance of carbonic anhydrase IX ( CA IX) expression in patients with clear cell renal cell carcinoma ( ccRCC) . Methods CA IX excression in a cohort of 120 patients with ccRCC was evaluated by P-V immunohistochemistry展开更多
Carbonic anhydrase accounts for catalytic reaction of CO_(2)/HCO_(3)^(–) transformation, thus resulting in neutralization and acidification of the cellular environment, thereby favoring tumor development. Hence, it i...Carbonic anhydrase accounts for catalytic reaction of CO_(2)/HCO_(3)^(–) transformation, thus resulting in neutralization and acidification of the cellular environment, thereby favoring tumor development. Hence, it is a classical protein model of greatly biocatalytic significance as well as a highly expressed biomarker with renal tumor. We herein proposed a single-molecule measurement on carbonic anhydrase using MspA nanopore, in [BMIM+] and asymmetric K^(+)/Ca^(2+) cationic coordinated environment, instead of usual symmetric KCl/NaCl electrolyte. Significantly, our empirical analysis showed that asymmetric K^(+)/Ca^(2+) cationic environment contributes to distinguishable current modulations, thus yielding better resolution for carbonic anhydrase measurement, which is independent of applied voltage and more importantly, is stable enough at varied pH conditions and for very low concentration test in urine sample. Our results provide a classical model for nanopore protein analysis, and may also permit biocatalytic measurement at single-molecule level.展开更多
Objective To demonstrate the molecular expression of carbonic anhydrase Ⅳ (CA Ⅳ) in rabbit corneal endothelium.Methods Reverse transcriptase polymerase chain reaction (RT-PCR) was performed using cultured and fres...Objective To demonstrate the molecular expression of carbonic anhydrase Ⅳ (CA Ⅳ) in rabbit corneal endothelium.Methods Reverse transcriptase polymerase chain reaction (RT-PCR) was performed using cultured and fresh rabbit corneal endothelial total RNA and specific primers for CA Ⅳ. The RT-PCR product was subcloned and sequenced. Immunoblotting and indirect immunofluorescence staining were performed to detect protein expression and distribution of CA Ⅳ using fresh and cultured rabbit corneal endothelium and rat anti-CA Ⅳ polyclonal antibody. Results RT-PCR screening gave positive bands at the predicted size for CA Ⅳ from fresh and cultured rabbit corneal endothelium. Sequencing further confirmed the identity of CA Ⅳ in corneal endothelium. Immunoblotting analysis showed a single band at 52 kDa for freshly isolated and cultured endothelial cells. Indirect immunofluorescence staining revealed an apparent positive staining in cultured endothelial cells.Conclusion Carbonic anhydrase Ⅳ is expressed in rabbit corneal endothelium, which could contribute to the transendothelial HCO 3 - flux that is necessary to maintain corneal hydration and transparency.展开更多
Thirty-four sampling sites for surface water and twenty-seven sampling sites for ground water in areas of different land use were selected in the Wujiang River Basin, upstream section in Guizhou Province, China. Carbo...Thirty-four sampling sites for surface water and twenty-seven sampling sites for ground water in areas of different land use were selected in the Wujiang River Basin, upstream section in Guizhou Province, China. Carbonic anhydrase (CA) activity in surface and ground water was analyzed and compared. The results show that CA activity was detected in all surface and ground water samples. In general, average CA activity in surface and ground water was highest from samples in arbor lands, followed by shrub lands, shrub and grass lands, agricultural lands, and residential areas. The average CA activity in ground water from arbor lands, shrub lands, and shrub and grass lands was higher than that in surface water. Water CA activity was positively correlated with HCO3- concentration in surface water and ground water. These results imply that the contribution of CA in water to the karst carbon sink potential of river basins warrants further extensive and in-depth research.展开更多
: To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations, Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2 concentrations wi...: To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations, Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2 concentrations within the range 3-186 ümol/L and the biochemical composition, carbonic anhydrase (CA), and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate, and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186 ümol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 ümol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2 enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.展开更多
We investigated the differences in the gene expression of carbonic anhydrase (CA) and cysteine synthase (CysM) between two weathering conditions, with either soluble potassium or insoluble potassium. We cultured a...We investigated the differences in the gene expression of carbonic anhydrase (CA) and cysteine synthase (CysM) between two weathering conditions, with either soluble potassium or insoluble potassium. We cultured a strain of A. niger by adopting a variant Czapek medium (using NazHPO4 as a substitute for KzHPO4) in two groups, Group A (containing silicate minerals bearing potassium but without KC1) and Group B (with KCI) . We extracted the mRNAs of CA and CysM from these two groups and performed real-time quantitative polymerase chain reactions (RT-qPCR). We constructed relative standard curves by using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the reference to confirm a consistent amplification effi- ciency of the target genes (CA and CysM) and the reference gene and quantified the gene expression of the targets in a relative manner. Our results showed that CA and CysM in Group A were upregulated for 1.7 times and 11.7 times, respectively, com- pared with those in Group B. Furthermore, we also analyzed some metabolic pathways and functions of the A. niger-induced weathering of potassium-bearing minerals, which involved the synthesizing of these two enzymes. Thus our work provides materials for further study of the roles of A. niger in the metabolic regulation during the weathering process of potassi- um-beating minerals.展开更多
Carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the interconversion of CO2 and HCO3- and are ubiquitous in nature. Higher plants contain three evolutionarily distinct CA families, αCAs, 13CAs, and ...Carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the interconversion of CO2 and HCO3- and are ubiquitous in nature. Higher plants contain three evolutionarily distinct CA families, αCAs, 13CAs, and γCAs, where each family is represented by multiple isoforms in all species. Alternative splicing of CA transcripts appears common; consequently, the number of functional CA isoforms in a species may exceed the number of genes. CAs are expressed in numerous plant tissues and in different cellular locations. The most prevalent CAs are those in the chloroplast, cytosol, and mitochondria. This diversity in location is paralleled in the many physiological and biochemical roles that CAs play in plants. In this review, the number and types of CAs in C3, C4, and crassulacean acid metabolism (CAM) plants are considered, and the roles of the α and yCAs are briefly discussed. The remainder of the review focuses on plant βCAs and includes the identification of homologs between species using phylogenetic approaches, a consideration of the inter- and intracellular localization of the proteins, along with the evidence for alternative splice forms. Current understanding of βCA tissue-specific expression patterns and what controls them are reviewed, and the physiological roles for which βCAs have been implicated are presented.展开更多
The carbonic anhydrases(CAs)are a group of enzymes that play an important role in the absorption and transportation of CO_(2) in Saccharina japonica.They are encoded by a superfamily of genes with seven subtypes that ...The carbonic anhydrases(CAs)are a group of enzymes that play an important role in the absorption and transportation of CO_(2) in Saccharina japonica.They are encoded by a superfamily of genes with seven subtypes that are unrelated in sequence but share conserved function in catalyzing the reversible conversion of CO_(2) and HCO_(3)^(-).Here we have characterized the CA members in the transcriptome of S.japonica using Single-molecule real-time(SMRT)sequencing technology.Approximately 9830.4 megabases from 5,028,003 quality subreads were generated,and they were assembled into 326,512 full-length non-chimeric(FLNC)reads,with an average flnc read length of 2181 bp.After removing redundant sequences,79,010 unique transcripts were obtained of which 38,039 transcripts were successfully annotated.From the full-length transcriptome,we have identified 7 full-length cDNA sequences for CA genes(4α-CAs,1β-CAs and 2γ-CAs)and assessed for their potential functions based on phylogenetic analysis.Characterizations of CAs will provide the ground for future studies to determine the involvement of CAs in inorganic carbon absorption and transportation in S.japonica.展开更多
Mineralization catalyzed by carbonic anhydrase(CA)is one of the most promising technologies for capturing CO_(2).In this work,Escherichia coli BL21(DE3)was used as the host,and the N-terminus of ice nucleation protein...Mineralization catalyzed by carbonic anhydrase(CA)is one of the most promising technologies for capturing CO_(2).In this work,Escherichia coli BL21(DE3)was used as the host,and the N-terminus of ice nucleation protein(INPN)was used as the carrier protein.Different fusion patterns and vectors were used to construct CA surface display systems forα-carbonic anhydrase(HPCA)from Helicobacter pylori 26695 andα-carbonic anhydrase(SazCA)from Sulfurihydrogenibium azorense.The surface display system in which HPCA was fused with INPN via a flexible linker and intermediate repeat sequences showed higher whole-cell enzyme activity,while the enzyme activity of the SazCA expression system was significantly higher than that of the HPCA expression system.The pET22b vector with the signal peptide PelB was more suitable for the cell surface display of SazCA.Cell frac-tionation and western-blot analysis indicated that SazCA and INPN were successfully anchored on the cell’s outer membrane as a fusion protein.The enzyme activity of the surface display strain E-22b-I RL S(11.43 U⋅mL^(−1) OD 600−1)was significantly higher than that of the intracellular expression strain E-22b-S(8.355 U⋅mL^(−1) OD 600−1)under optimized induction conditions.Compared with free SazCA,E-22b-I RL S had higher thermal and pH stability.The long-term stability of SazCA was also significantly improved by surface display.When the engineered strain and free enzyme were used for CO_(2) mineralization,the amount of CaCO_(3) deposition catalyzed by the strain E-22b-I RL S on the surface(241 mg)was similar to that of the free SazCA and was significantly higher than the intracellular expression strain E-22b-S(173 mg).These results demonstrate that the SazCA surface display strain can serve as a whole-cell biocatalyst for CO_(2) capture and mineralization.展开更多
Early detection and intervention are key strategies to reduce mortality,increase longterm survival,and improve the therapeutic effects of hepatocellular carcinoma(HCC)patients.Herein,the isobaric tag for relative and ...Early detection and intervention are key strategies to reduce mortality,increase longterm survival,and improve the therapeutic effects of hepatocellular carcinoma(HCC)patients.Herein,the isobaric tag for relative and absolute quantitation(iTRAQ)-based quantitative proteomic strategy was used to study the secretomes in conditioned media from HCC cancerous tissues,surrounding noncancerous tissues,and distal noncancerous tissues to identify diagnostic and prognostic biomarkers for HCC.In total,22 and 49 dysregulated secretory proteins were identified in the cancerous and surrounding noncancerous tissues,respectively,compared with the distal noncancerous tissues.Among these proteins,carbonic anhydrase II(CA2)was identified to be significantly upregulated in the secretome of cancerous tissues;correspondingly,the serum concentrations of CA2 were remarkably increased in HCC patients compared with that in normal populations.Interestingly,a significant increase of serum CA2 in recurrent HCC patients after radical resection was also confirmed compared with HCC patients without recurrence,and the serum level of CA2 could act as an independent prognostic factor for time to recurrence and overall survival.Regarding the mechanism,the secreted CA2 enhances the migration and invasion of HCC cells by activating the epithelial mesenchymal transition pathway.Taken together,this study identified a novel biomarker for HCC diagnosis and prognosis,and provided a valuable resource of HCC secretome for investigating serological biomarkers.展开更多
基金Supported by the Fundamental Research Program of Shanxi Province(Nos.202103021223266,202203021211313,202303021211114,202303021222246)the Excellent Doctoral Research Project in Shanxi Province(No.QZX-2023005)the Shanxi Scientific and Technological Innovation Team of Halophiles Resources Utilization(No.202204051001035)。
文摘Water scarcity and pollution pose a threat to the sustainable development of cities and society.Therefore,it is crucial to analyze the hydrochemical characteristics and carbon dynamics of waterdeficient areas.Taking the Taiyuan section of Fenhe River as the research object,we systematically explored the hydrochemical characteristics of surface water and its evolutionary processes,as well as the ecological effect of algal carbonic anhydrase in carbon cycle using the hydrochemical evolution method and correlation analysis.The ternary diagram demonstrates that the main water chemical type in Fenhe River was SO^(2-)_(4)·Cl^(-)-Na^(+).The Gibbs and end-member diagrams of each ion display that the chemical composition of surface water was mainly controlled by silicate decomposition.The chemical ions originated mainly from dissolution of some minerals,such as plagioclase,halite,dolomite,calcite,and gypsum.The diatoms had a lower CO_(2)requirement because they exhibited a higher abundance at a lower partial pressure of CO_(2)(p CO_(2)).However,high CO_(2)concentration had a positive effect on cyanobacteria,which reduced the active transport of HCO_(3)^(-),saved the energy needed for this part of active transport,and indirectly improved the overall photosynthetic efficiency of algae.Carbonic anhydrase(CA)activity was significantly negatively correlated with p CO_(2)and positively correlated with HCO_(3)^(-)concentration,indicating that CA in water promoted the conversion of CO_(2)to HCO_(3)^(-).The HCO_(3)^(-)generated from this process continued to participate in the erosion of silicate rocks,sequestering CO_(2)in the form of Ca CO_(3),which has a non-negligible impact on the carbon sink in the Fenhe River.These consequences may have important implications for the biogeochemical cycling occurring in urban water.
基金Financial supports for this research was provided by the National Nature Science Foundation of China(Grant 40073026)Ministry of Science and Technology of China(Grant 164)+1 种基金Natural Science Foundation of Guangxi(Grant 9824021)Ministry of Land and Resources of China(Grant 9806)and Bremen University of Germany.
文摘The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determining in carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze the CO2 conversion process in dissolution experiments of limestone and dolomite. It was found that the rate of dissolution increases by a factor of about 10 after the addition of CA at a high CO2 partial pressure (Pco2) for limestone and about 3 at low Pco2 for dolomite. This shows that reappraisal is necessary for the importance of chemical weathering (including carbonate rock dissolution and silicate weathering) in the atmospheric CO2 sink and the mysterious missing sink in carbon cycling. It is doubtless that previous studies of weathering underestimated weathering rates due to the ignorance of CA as an activator in weathering, thus the contribution of weathering to the atmospheric CO2 sink is also underestimated. This finding also shows the need to examine the situ distribution and activity of CA in different waters and to investigate the role of CA in weathering.
基金Supported by the Grants From Sigrid Juselius Foundation, from Finnish Cultural Foundation and Finnish Dental Society from the National Institutes of Health (DK40163, GM34182, and GM53405)from Slovak Grant Agency (2/2025) from the Slovak Government (Cancer Genomics SP 51/0280800) and from Bayer Corporation
文摘AIM:To analyze possible relationships between CA IX/ CA XII and pVHL expression in normal and neoplastic colorectal mucosa. METHODS: Immunohistochemical staining of 42 tissue specimens obtained from 17 cancer patients was performed to evaluate the distribution and semi-quantitatively assess the levels of CA IX, CA XII and pVHL. VHL mRNAs from 14 fresh-frozen tumors was amplified by RT-PCR and subjected to sequencing. CA9 and G412mRNA levels were analyzed by semi-quantitative RT-PCR in comparison with VEGFas an indicator of hypoxia that uncouples the pVHL control. RESULTS: Tumor tissues were associated with a borderline increase of CA IX staining signal and slight but significant decrease of CA XII immunoreactivity, whereas no association was found for pVHL. Sequence analysis of RT-PCR-amplified VHL mRNAs revealed no deletions/ mutations, suggesting that they were VHL-competent. We did not observe any correlation between pVHL and CA IX/CA XII proteins as well as between MEGFand CA9 mRNAs, but the tumor-associated changes in mRNA levels of VEGFand CA12 showed a significant inverse relationship. CONCLUSION: Our results indicate that CA9and CA12 are regulated by different intratumoral factors and that lack of apparent relationship between the levels of CA IX/CA XII and pVHL cannot be fully assigned to uncoupling of negative regulatory function of pVHL by tumor hypoxia signified by induced VEGF transcription. The interplay between the functional pVHL and CA IX/CA XII in colorectal tumors seems rather complex and is not evident merely at the expression levels.
基金the National Natural Science Fundation of China(21776213)Natural Science Fund of Tianjin(19JCYBJC19700)for financial support。
文摘Carbonic anhydrase(CA)as a typical metalloenzyme in biological system can accelerate the hydration/dehydration of carbon dioxide(CO2,the major components of greenhouse gases),which performer with high selectivity,environmental friendliness and superior efficiency.However,the free form of CA is quite expensive(~RMB 3000/100 mg),unstable,and non-reusable as the free form of CA is not easy for recovery from the reaction environment,which severely limits its large-scale industrial applications.The immobilization may solve these problems at the same time.In this context,many efforts have been devoted to improving the chemical and thermal stabilities of CA through immobilization strategy.Very recently,a wide range of available inorganic,organic and hybrid compounds have been explored as carrier materials for CA immobilization,which could not only improve the tolerance of CA in hazardous environments,but also improve the efficiency and recovery to reduce the cost of large-scale application of CA.Several excellent reviews about immobilization methods and application potential of CA have been published.By contrast,in our review,we stressed on the way to better retain the biocatalytic activity of immobilized CA system based on different carrier materials and to solve the problems facing in practical operations well.The concluding remarks are presented with a perspective on constructing efficient CO2 conversion systems through rational combining CA and advanced carrier materials.
基金Supported by the Grants from Sigrid Juselius Foundation, The Academy of Finland (SP), Finnish Cultural Foundation and Finnish Dental Society UK)
文摘Carbonic anhydrases (CAs) catalyse the hydration of C02 to bicarbonate at physiological pH. This chemical interconversion is crucial since HCO3- is the substrate for several biosynthetic reactions. This review is focused on the distribution and role of CA isoenzymes in both normal and pathological gastrointestinal (GI) tract tissues. It has been known for many years that CAs are widely present in the GI tract and play important roles in several physiological functions such as production of saliva, gastric acid, bile, and pancreatic juice as well as in absorption of salt and water in intestine. New information suggests that these enzymes participate in several processes that were not envisioned earlier. Especially, the recent reports on plasma membrane-bound isoenzymes IX and XII have raised considerable interest since they were reported to participate in cancer invasion and spread. They are induced by tumour hypoxia and may also play a role in von Hippel-Lindau (VHL)-mediated carcinogenesis.
基金Supported by National High-Tech Research and Development Pro-gram of China (863 Program, No. 2002AA628050) and National Natural Science Foundation of China (No. 30270031).
文摘Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaC1. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase (CAH) gene ofD. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.
基金Supported by Project of National Natural Science Foundation(31360300&31560362)Key Project of the Tibet Autonomous Region(XZXTCX-2016)
文摘A carbonic anhydrase( CA) transcript was obtained from the Contig library according to the published sequencing information of the buckwheat transcripts. The full length of the CA gene was amplified by reverse transcription PCR( RT-PCR). The bioinformatics analysis showed that the full length of Fs CA1 gene was 1233 bp and open reading frame was 978 bp,and encoding 325 amino acids. The molecular weight was 35. 11 ku and the isoelectric point was 7. 59; there were 9 α helices,6 β folds,many randon coil and extension chain,containing one signal peptide and one transmembrane region,having a 2 amino acid conserved domains with typical beta-type carbonic anhydrase. Subcellular localization showed that the protein is most likely to appear in the chloroplast. The three-dimensional structure model of Fs CA1 was built by homologous modeling method,indicating that the homo-octamer of buckwheat CA and pea CA could match well,so it can be inferred that buckwheat CA is also homo-octamer. Real-time quantitative PCR was used to detect the expression of Fs CA1 in different organs of buckwheat.The results showed that Fs CA1 had the highest expression level in leaves,then in the stems,and the lowest in roots.
文摘Many cancer cells in solid tumors are hypoxic or pseudohypoxic and create acidic environment for malignancy progression. Under low oxygen conditions (hypoxia), hypoxia-inducible factors (HIFs) play pathological roles in cancer cell survival and spreading. HIF regulates several genes such as genes of glucose transporters that enhance anaerobic glycolysis, angiogenesis, erythropoiesis and carbonic anhydrase IX (CA-IX). CA-IX is a cell-surface glycoprotein that catalyzes the hydration of CO2 to protons and bicarbonate ions (respiratory acidification). This process is involved in adaptation to acidosis and implicated in cancer progression. Therefore, CA-IX inhibitors (such as sulfonamide-based compounds) showed hoping results in reduction malignancy progression. The article aims to reversal the malignant hypoxic environment in solid tumors to create a condition of weakness within the cancer for further focused cisplatin potency. This article suggests the use of modified synthesized HIF as a drug delivery molecule for both carbonic anhydrase IX inhibitor and glycosylated cisplatin that damages the DNA of malignant cell. HIF molecule has high affinity to bind with CA IX-expressing malignant cells, which is followed by cell entrance via endocytosis. Once the HIF-Cisplatin-CA-inhibitor complex enters the cell, the carbonic anhydrase inhibitor will improve the cellular pH that makes the environment unsuitable for HIF 1α function and it may be ubiquitinated. So, the raise in target genes transcription will be arrested. On the other hand, once the synthetized HIF is degraded, the cisplatin molecules will be released inside the malignant cell and start to damage its DNA. This approach may be a good solution for many solid tumors.
基金Supported by the National Natural Science Foundation of China (No.81170827)Fundamental Research Funds of State Key Lab
文摘Carbonic anhydrase (CA) is a kind of zinc enzyme that reversibly catalyzes hydration of CO2. Sixteen CAisoenzymes have been described in mammals . These isozymes play physiological roles in erythrocytes, including CO2 transport, ion secretion, pH regulation and so forth. CA1 and 2 are both cytosolic enzymes that are found in large quantities in erythrocytes. Excluding hemoglobin, CA I is the most abundant protein in erythrocytes
文摘Background: Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the reversible hydration of CO<sub>2</sub> to and H<sup>+</sup>. CA plays a crucial role in CO<sub>2</sub> transport, acid-base balance, and in linking local acidosis to O<sub>2</sub> unloading from hemoglobin and also facilitates lactate shuttling across the monocarboxylate transporters (MCT). The study aimed to investigate the influence of hyperglycemia on erythrocyte carbonic anhydrase activity and lactic acid in type II diabetic patients. Method: Red blood cell carbonic anhydrase activity was determined in washed lysed-hemolysate by the action of the enzyme on the substrate p-nitrophenyl acetate. The absorbance of released p-nitrophenol was recorded at 345 nm. Glycated Hemoglobin was determined by ion exchange method (Spectrum Diagnostic Kit). Blood glucose, lactate, cholesterol and triglyceride were determined using Accutrend GCT meter (Roche, Germany) with cobias<sup>®</sup> test strips. Results: The present study showed that hyperglycemia significantly (p < 0.05) increased both erythrocyte carbonic anhydrase activity and blood lactate level in type II diabetic patients. Conclusion: We may conclude that hyperglycemia may be responsible for the increased activity of carbonic anhydrase activity and blood lactate concentration.
文摘Objective To evaluate the prognostic significance of carbonic anhydrase IX ( CA IX) expression in patients with clear cell renal cell carcinoma ( ccRCC) . Methods CA IX excression in a cohort of 120 patients with ccRCC was evaluated by P-V immunohistochemistry
基金National Key Research and Development Program of China(2022YFB3205600)Chongqing Talents:Exceptional Young Talents Project(cstc2021ycjh-bgzxm0016)+1 种基金Beibei Technology Talents and Independent Innovation Project(No.2022-34)the Natural Science Foundation of Chongqing,China(cstc2021jcyj-jqx0030).
文摘Carbonic anhydrase accounts for catalytic reaction of CO_(2)/HCO_(3)^(–) transformation, thus resulting in neutralization and acidification of the cellular environment, thereby favoring tumor development. Hence, it is a classical protein model of greatly biocatalytic significance as well as a highly expressed biomarker with renal tumor. We herein proposed a single-molecule measurement on carbonic anhydrase using MspA nanopore, in [BMIM+] and asymmetric K^(+)/Ca^(2+) cationic coordinated environment, instead of usual symmetric KCl/NaCl electrolyte. Significantly, our empirical analysis showed that asymmetric K^(+)/Ca^(2+) cationic environment contributes to distinguishable current modulations, thus yielding better resolution for carbonic anhydrase measurement, which is independent of applied voltage and more importantly, is stable enough at varied pH conditions and for very low concentration test in urine sample. Our results provide a classical model for nanopore protein analysis, and may also permit biocatalytic measurement at single-molecule level.
基金ThisstudywaspartiallysupportedbythegrantfromtheChineseMedicalScienceFoundationofShandong (No 990 3 2 )
文摘Objective To demonstrate the molecular expression of carbonic anhydrase Ⅳ (CA Ⅳ) in rabbit corneal endothelium.Methods Reverse transcriptase polymerase chain reaction (RT-PCR) was performed using cultured and fresh rabbit corneal endothelial total RNA and specific primers for CA Ⅳ. The RT-PCR product was subcloned and sequenced. Immunoblotting and indirect immunofluorescence staining were performed to detect protein expression and distribution of CA Ⅳ using fresh and cultured rabbit corneal endothelium and rat anti-CA Ⅳ polyclonal antibody. Results RT-PCR screening gave positive bands at the predicted size for CA Ⅳ from fresh and cultured rabbit corneal endothelium. Sequencing further confirmed the identity of CA Ⅳ in corneal endothelium. Immunoblotting analysis showed a single band at 52 kDa for freshly isolated and cultured endothelial cells. Indirect immunofluorescence staining revealed an apparent positive staining in cultured endothelial cells.Conclusion Carbonic anhydrase Ⅳ is expressed in rabbit corneal endothelium, which could contribute to the transendothelial HCO 3 - flux that is necessary to maintain corneal hydration and transparency.
基金Sub-project of Geological Survey Work Item of China Geological Survey Bureau(Grant No.12120113005200)the Fundamental Research Funds for the Central Universities(Grant No.2015QN102)
文摘Thirty-four sampling sites for surface water and twenty-seven sampling sites for ground water in areas of different land use were selected in the Wujiang River Basin, upstream section in Guizhou Province, China. Carbonic anhydrase (CA) activity in surface and ground water was analyzed and compared. The results show that CA activity was detected in all surface and ground water samples. In general, average CA activity in surface and ground water was highest from samples in arbor lands, followed by shrub lands, shrub and grass lands, agricultural lands, and residential areas. The average CA activity in ground water from arbor lands, shrub lands, and shrub and grass lands was higher than that in surface water. Water CA activity was positively correlated with HCO3- concentration in surface water and ground water. These results imply that the contribution of CA in water to the karst carbon sink potential of river basins warrants further extensive and in-depth research.
文摘: To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations, Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2 concentrations within the range 3-186 ümol/L and the biochemical composition, carbonic anhydrase (CA), and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate, and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186 ümol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 ümol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2 enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.
基金supported by the National Natural Science Foundation of China(Grant No.41173091)National Key Basic Research Program of China(Grant No.2013CB956702)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘We investigated the differences in the gene expression of carbonic anhydrase (CA) and cysteine synthase (CysM) between two weathering conditions, with either soluble potassium or insoluble potassium. We cultured a strain of A. niger by adopting a variant Czapek medium (using NazHPO4 as a substitute for KzHPO4) in two groups, Group A (containing silicate minerals bearing potassium but without KC1) and Group B (with KCI) . We extracted the mRNAs of CA and CysM from these two groups and performed real-time quantitative polymerase chain reactions (RT-qPCR). We constructed relative standard curves by using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the reference to confirm a consistent amplification effi- ciency of the target genes (CA and CysM) and the reference gene and quantified the gene expression of the targets in a relative manner. Our results showed that CA and CysM in Group A were upregulated for 1.7 times and 11.7 times, respectively, com- pared with those in Group B. Furthermore, we also analyzed some metabolic pathways and functions of the A. niger-induced weathering of potassium-bearing minerals, which involved the synthesizing of these two enzymes. Thus our work provides materials for further study of the roles of A. niger in the metabolic regulation during the weathering process of potassi- um-beating minerals.
文摘Carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the interconversion of CO2 and HCO3- and are ubiquitous in nature. Higher plants contain three evolutionarily distinct CA families, αCAs, 13CAs, and γCAs, where each family is represented by multiple isoforms in all species. Alternative splicing of CA transcripts appears common; consequently, the number of functional CA isoforms in a species may exceed the number of genes. CAs are expressed in numerous plant tissues and in different cellular locations. The most prevalent CAs are those in the chloroplast, cytosol, and mitochondria. This diversity in location is paralleled in the many physiological and biochemical roles that CAs play in plants. In this review, the number and types of CAs in C3, C4, and crassulacean acid metabolism (CAM) plants are considered, and the roles of the α and yCAs are briefly discussed. The remainder of the review focuses on plant βCAs and includes the identification of homologs between species using phylogenetic approaches, a consideration of the inter- and intracellular localization of the proteins, along with the evidence for alternative splice forms. Current understanding of βCA tissue-specific expression patterns and what controls them are reviewed, and the physiological roles for which βCAs have been implicated are presented.
基金This research was supported by Shanghai Universities Peak Discipline Project of Aquaculture and“Double First-Class Initiative”program for its First-Class Discipline of aquaculture.
文摘The carbonic anhydrases(CAs)are a group of enzymes that play an important role in the absorption and transportation of CO_(2) in Saccharina japonica.They are encoded by a superfamily of genes with seven subtypes that are unrelated in sequence but share conserved function in catalyzing the reversible conversion of CO_(2) and HCO_(3)^(-).Here we have characterized the CA members in the transcriptome of S.japonica using Single-molecule real-time(SMRT)sequencing technology.Approximately 9830.4 megabases from 5,028,003 quality subreads were generated,and they were assembled into 326,512 full-length non-chimeric(FLNC)reads,with an average flnc read length of 2181 bp.After removing redundant sequences,79,010 unique transcripts were obtained of which 38,039 transcripts were successfully annotated.From the full-length transcriptome,we have identified 7 full-length cDNA sequences for CA genes(4α-CAs,1β-CAs and 2γ-CAs)and assessed for their potential functions based on phylogenetic analysis.Characterizations of CAs will provide the ground for future studies to determine the involvement of CAs in inorganic carbon absorption and transportation in S.japonica.
基金the financial support provided by the National Key Research and Development Program of China(Project No.2018YFA0902100)the National Natural Science Foundation of China(No.22178262,No.21576197).
文摘Mineralization catalyzed by carbonic anhydrase(CA)is one of the most promising technologies for capturing CO_(2).In this work,Escherichia coli BL21(DE3)was used as the host,and the N-terminus of ice nucleation protein(INPN)was used as the carrier protein.Different fusion patterns and vectors were used to construct CA surface display systems forα-carbonic anhydrase(HPCA)from Helicobacter pylori 26695 andα-carbonic anhydrase(SazCA)from Sulfurihydrogenibium azorense.The surface display system in which HPCA was fused with INPN via a flexible linker and intermediate repeat sequences showed higher whole-cell enzyme activity,while the enzyme activity of the SazCA expression system was significantly higher than that of the HPCA expression system.The pET22b vector with the signal peptide PelB was more suitable for the cell surface display of SazCA.Cell frac-tionation and western-blot analysis indicated that SazCA and INPN were successfully anchored on the cell’s outer membrane as a fusion protein.The enzyme activity of the surface display strain E-22b-I RL S(11.43 U⋅mL^(−1) OD 600−1)was significantly higher than that of the intracellular expression strain E-22b-S(8.355 U⋅mL^(−1) OD 600−1)under optimized induction conditions.Compared with free SazCA,E-22b-I RL S had higher thermal and pH stability.The long-term stability of SazCA was also significantly improved by surface display.When the engineered strain and free enzyme were used for CO_(2) mineralization,the amount of CaCO_(3) deposition catalyzed by the strain E-22b-I RL S on the surface(241 mg)was similar to that of the free SazCA and was significantly higher than the intracellular expression strain E-22b-S(173 mg).These results demonstrate that the SazCA surface display strain can serve as a whole-cell biocatalyst for CO_(2) capture and mineralization.
基金supported by the National Natural Science Foundation of China(Grant Nos.81702910 and 81672376)the Educational Commission of Fujian Province,China(Grant No.2018B013)the Natural Science Foundation of Fujian Province,China(Grant Nos.2019J01298,2017J01159,and 2016J01417)
文摘Early detection and intervention are key strategies to reduce mortality,increase longterm survival,and improve the therapeutic effects of hepatocellular carcinoma(HCC)patients.Herein,the isobaric tag for relative and absolute quantitation(iTRAQ)-based quantitative proteomic strategy was used to study the secretomes in conditioned media from HCC cancerous tissues,surrounding noncancerous tissues,and distal noncancerous tissues to identify diagnostic and prognostic biomarkers for HCC.In total,22 and 49 dysregulated secretory proteins were identified in the cancerous and surrounding noncancerous tissues,respectively,compared with the distal noncancerous tissues.Among these proteins,carbonic anhydrase II(CA2)was identified to be significantly upregulated in the secretome of cancerous tissues;correspondingly,the serum concentrations of CA2 were remarkably increased in HCC patients compared with that in normal populations.Interestingly,a significant increase of serum CA2 in recurrent HCC patients after radical resection was also confirmed compared with HCC patients without recurrence,and the serum level of CA2 could act as an independent prognostic factor for time to recurrence and overall survival.Regarding the mechanism,the secreted CA2 enhances the migration and invasion of HCC cells by activating the epithelial mesenchymal transition pathway.Taken together,this study identified a novel biomarker for HCC diagnosis and prognosis,and provided a valuable resource of HCC secretome for investigating serological biomarkers.