To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
The Carboniferous-Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the wo...The Carboniferous-Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the world, which can be further divided into two sub-provinces: Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360--351 Ma) of the youngest ophiolite and the peak of subduction metamorphism of high pressure-low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ~352 Ma and A-type granite with age of ~358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our summation shows that at least four criteria, being normally used to identify ancient asthenosphere upwelling (or mantle plumes), are met for this large igneous province: (1) surface uplift prior to magmatism; (2) being associated with continental rifting and breakup events; (3) chemical characteristics of asthenosphere (or plume) derived basalts; (4) close links to large-scale mineralization and the uncontaminated basalts, being analogous to those of many "ore-bearing" large igneous provinces, display Sr-Nd isotopic variations between plume and EMI geochemical signatures, These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan--Tarim (central Asia) large igneous province.展开更多
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanw...Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanwoling,Zhongposhan and Luodong etc.,intrusions(Qin et al.,2011;Zhang et al.,2017;Xue et al.,2018).These Beishan mafic-ultramafic complexes are composed of peridotite,pyroxenite.展开更多
In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous-Permian stratigraphic sequences and sedimentary environments in southeastern Inner M...In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous-Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous-Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE-NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous-Middle Permian is dominated by llttoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous-Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic melanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic melange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).展开更多
Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain ...Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain temporal-spatial distribution characteristics. Volcanic fragments were probably derived from two different volcanic sources north and south of the North China Platform, while the magma of the two volcanic sources was probably derived from the lower crust. A new stratigraphic correlation scheme is put forward for the Benxi and Taiyuan Formations in this region on the basis of previous biostratigraphic work with the regionally widespread volcanic event layers as the marker bed for the isochronous stratigraphic correlation on a super-regional scale and in conjunction with the maximum transgressive event layers.展开更多
A total of 48 samples of Carboniferous–Permian coal was taken from the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China. Cu2 coal is the major coalseam of the Daqingshan Coalfield. The samples were analyzed ...A total of 48 samples of Carboniferous–Permian coal was taken from the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China. Cu2 coal is the major coalseam of the Daqingshan Coalfield. The samples were analyzed by the ?nductively coupled plasma–mass spectrometer method.The results indicate the content of V, Cr, Cu, Zn, Ga, Se, Ag,Cd, In, Ba, Pb and U of the Cu2 coals from Adaohai Mine is higher than that of the common Chinese coals. Compared to the world hard coals, the content of V, Cu, Zn, Ga, Se, Sr, Ag,Cd, In, Ba and U is relatively high. Compared to the clark values of the crust, only elements Se, Ag, Pb and Bi are enriched in the coal. Most of the elements in coal benches are lower than in those in roofs and partings. The statistical analysis and clustering analysis showed that the modes of trace elements occurrence for the Cu2 coal correlated positively with the minerals. The values of Sr/Ba show that the coal forming environment was influenced both by sea water and fresh water.展开更多
The Roaches Grit in the UK Pennine Basin was a complex deep water deltaic sequence deposited during the Late Carboniferous glacial period. The channels of the upper part of the Roaches Grit, deposited towards the end ...The Roaches Grit in the UK Pennine Basin was a complex deep water deltaic sequence deposited during the Late Carboniferous glacial period. The channels of the upper part of the Roaches Grit, deposited towards the end of the cyclothem after the eustatic minimum, contain evidence for very high seasonal discharges related to strong monsoon rainfall in the catchment areas. In some channels, intense turbulence near the delta front, led to knick point recession and deep incision. These channels were filled with sediments during reduced discharge, including very large sets of cross-bedding up to 16 m thick. Channels were short-lived with frequent avulsions. Over time slightly lower discharges formed laterally migrating channels dominated by bar forms. Different discharge-controlled processes operated on the reactivated delta slope. Incised channels generated turbidity currents during floods which transported sediments directly into the basin far from the delta. Migrating channels built mouth bars;resedimentation during floods formed density currents which then deposited sediment on the lower parts of the slope.展开更多
The platform-facies carbonate rocks of the Carboniferous-Permian boundary strata are well developed and outcropped in Xikou (西口), Zhen'an (镇安) County, Shaanxi ( 陕西 ) Province, China. The carbonate diagenc...The platform-facies carbonate rocks of the Carboniferous-Permian boundary strata are well developed and outcropped in Xikou (西口), Zhen'an (镇安) County, Shaanxi ( 陕西 ) Province, China. The carbonate diagencsis in the Carboniferous-Permian boundary section at Xikou contains many processes with conspicuous effects, including micritization, cementation, mechanical and chemical compaction, neomorphism, and dissolution. Based on mineralogical composition and microfabrics, the diagenetic environments are distinguished into marine, near surface meteoric and burial environments. Detailed petrographical observation of abundant thin sections integrated with previous studies on sequence stratigraphy reveals that the carbonate diagenesis in the Carboniferous-Permian boundary section is related to the relative stratigraphic position of the rocks in the high-frequency cycles and controlled by the glacioeustatic sea-level changes. There are distinctive differences in diagenetic patterns between the lower transgressive sequence and the upper regressive sequence in a cyclothem. The diagenesis in the lower transgressive sequence is mainly characterized by pressure dissolution and recrystallization of mudstone and wackstone in a burial environment, and the diagenesis in the upper regressive sequence by cementation and leaching of freshwater in a meteoric environment.展开更多
During the last five years conodont faunas of 6 Carboniferous-Permian sections of the Eastern and Central Iran have been investigated.Recently fusulinids from these sections(Anarak,Zaladu,Halvan,Tangale -Mokhtar,Kaviz...During the last five years conodont faunas of 6 Carboniferous-Permian sections of the Eastern and Central Iran have been investigated.Recently fusulinids from these sections(Anarak,Zaladu,Halvan,Tangale -Mokhtar,Kaviz and Bage-Vang) were studied by E.Ja.Leven.The provincial Permian scale in the Tethys (Leven,1980) is based on fusulinids.The occurrence of fusulinids and conodonts in the same samples展开更多
The Carboniferous can be divided into four series in the Dianqiangui basin and its adjacent areas, Southwest China: the Yanguanian series, the Datangian series, the Weiningian series and the Mapingian series. The Map...The Carboniferous can be divided into four series in the Dianqiangui basin and its adjacent areas, Southwest China: the Yanguanian series, the Datangian series, the Weiningian series and the Mapingian series. The Maping Formation, traditionally used as the lithostraUgraphic unit of the Upper Carboniferous, became an inter-system unit from the Carboniferous to the Permian. Thus, the top part of the Carboniferous and the bottom part of the Permian (Chuaushanian series) constitute a third-order sequence in the Dianqiangui basin and its adjacent areas. In the study area, the Carboniferous system and the Chuanshanian series of the Permian constitute a second-order sequence that can be subdivided into 6 third-order sequences. The bottom boundary of this second-order sequence is an unconformity formed in the principal episode of the Ziyun movement (the second episode), and the top boundary is also an unconformity formed in the principal episode of the Qiangui movement (the second episode). In different paleogeographical backgrounds, the strata from the Carboniferous to the Permian Chuanshanian epoch are marked by different sedimentary features. For example, coal measures and more dolomitic strata are developed in the attached platform; carbonate rocks mainly constitute the isolated platform strata; the inter-platform ditch strata are mainly composed of dark and fine sediments. Therefore, third-order sequences with different architectures of sedimentary-facies succession are formed in different paleogeographical backgrounds. Although the third-order sequences are different in the architecture of sedimentary-succession in space, the processes of their depositional environmental changes due to the third-order relative sea-level changes are simultaneous. Biostratigraphically, the surfaces of the thirdorder sequences can be correlated and traced in space; the framework of sequence stratigraphy from the Carboniferous to the Chuanshanian epoch of the Permian can be established in the Dianqiangui basin and its adjacent areas in terms of two types of facies-changing surfaces as well as two kinds of diachronism in stratigraphic records. The sequence-stratigraphic subdivisions from the Carboniferous to the Permian Chuanshanian epoch in the study area show that the duration of third-order sequences, formed in the convergent period of Pangea, is more than 10 Ma. This could reflect the elementary feature that the period of sea-level change cycles formed in a relatively quiet period of tectonic action is more than 10 Ma. And this succession shows a marked cyclicity which is supposed to be the low-latitude response to the Gondwanan glaciation in the southern hemisphere.展开更多
An objection has been lodged against the traditional P/C boundary which were still upholded by International Subcommission on Permian Stratigraphy, International Commission on Stratigraphy, IUGS. And the rationality t...An objection has been lodged against the traditional P/C boundary which were still upholded by International Subcommission on Permian Stratigraphy, International Commission on Stratigraphy, IUGS. And the rationality to take the base of the Montiparus Zone as the P/C boundary is comprehensively demonstrated.展开更多
Four great second-order transgressions occurred during the Late Carboniferous to early Early Permian and they came from both the eastern and western sea areas in the North China Platform. As time went on, depocentres,...Four great second-order transgressions occurred during the Late Carboniferous to early Early Permian and they came from both the eastern and western sea areas in the North China Platform. As time went on, depocentres, depositional extent, transgression directions, coastline position and distribution of minable coal seams were changing continuously. The third great second-order transgression occurring at the beginning of the early Early Permian marks the maximum transgression period and before its arrival, i.e. at the close of the late Late Carboniferous, there was the super-regional coal-forming environment. During the second, third and fourth transgressions, the northern North China Platform was all along situated on the transgressive margin of the epicontinental sea and became the major distribution area of thick coal belts because it maintained a coal-forming environment for a long period of time from the close of the late Late Carboniferous to the Early Permian.展开更多
After the break of sedimentation from middle Ordovician to early Carboniferous, Lunnan ancient buried hill received deposition again in the middle of Carboniferous. According to the seismic structural explanation and ...After the break of sedimentation from middle Ordovician to early Carboniferous, Lunnan ancient buried hill received deposition again in the middle of Carboniferous. According to the seismic structural explanation and analysis of structural background, the research was carried out upon Ordovician soluble stratum and the distribution of soluble regions to the east of the 7th well in Lungu. In light of impression method and residual thickness method, and through the analysis of corresponding relations between upper and lower strata of ancient weathering crust in the research area, the gap between the bottom of doublet limestone, the symbol stratum in Carboniferous regions, and Ordovician buried hill stratum was filled. By applying impression method and residual thickness method, pre-Carboniferous paleokarst geomorphology in this region was rehabilitated, so as to prepare for the identification of ancient geomorphology. Geomorphic units such as karst highlands, karst gentle slopes and karst peak-cluster valleys were distinguished as alternative objective regions for further reservoir prediction work.展开更多
The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rock...The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rocks, carbonates and cherts. Some ultra-basic rocks (blocks) punctuate the formation. The formation was variously assigned to Silurian-Middle Devonian, Silurian-Lower Devonian, and pre-Devonian, mainly based on Atrypa bodini Mansuy, Hypothyridina parallelepipedia (Brour.) and Prismatophyllum hexagonum Yoh collected from the limestone interlayers, respectively. However, radiolarian fossils obtained from 24 chert specimens of the Wupata'erkan Group, mainly include Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon, Albaillella sp. cf. A. indensis Won, Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto, Albaillella sp. and Latentifistulidae gen. et. sp. indet., are earliest Carboniferous and Late Permian. The earliest Carboniferous assemblage is characterized by Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon and Albaillella sp. cf. A. indensis Won, and the Late Permian assemblage by Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto. This new stratigraphic evidence indicates that the Wupata'erkan Group is possibly composed of rocks with different ages from Silurian to Permian, and therefore, it is probably an ophiolite melange. The discovery of Late Permian Albaillella sp. cf. A. excelsa provides more reliable evidence supporting the existence of a Permian relic ancient oceanic basin in the western part of Xinjiang South Tianshan.展开更多
The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can...The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can be classified into two major magma types: (1) the low-Ti/Y type situated in the eastern-central Tianshan area, which exhibits low Ti/Y (<500), Ce/Yb (<15) and SiO2 (43-55%), and relatively high Fe2O3T (6.4-11.5%); (2) the high-Ti/Y type situated in the western Tianshan area, which has high Ti/Y (>500), Ce/Yb (>11) and SiO2 (49-55%), and relatively low Fe2O3T (5.8-7.8%). Elemental data suggest that chemical variations of the low-Ti/Y and high-Ti/Y lavas cannot be explained by fractional crystallization from a common parental magma. The Tianshan Carboniferous basic lavas originated most likely from an OIB-like asthenospheric mantle source (87Sr/86Sr(t) ≈ 0.703-0.705, eNd(0 = +4 to +7). The crustal contamination and continental lithospheric mantle have also contributed significantly to the formation of the basic lavas of the Tianshan Carboniferous post-collisional rift. The silicic lavas were probably generated by partial melting of the crust. The data of this study show that spatial petrogeochemical variations exist in the Carboniferous post-collisional rift volcanics province in the Tianshan region. Occurrence of the thickest volcanics dominated by tholeiitic lavas may imply that the center of the mantle-melting anomaly (mantle plume) was in the eastern Tianshan area at that time. The basic volcanic magmas in the eastern Tianshan area were generated by a relatively high degree of partial melting of the mantle source around the spinel-garnet transition zone, whereas the alkaline basaltic lavas are of the dominant magma type in the western Tianshan area, which were generated by a low degree of partial melting of the mantle source within the stable garnet region, thus the basic lavas of the western Tianshan area might have resulted from relatively thick lithosphere and low geothermal gradient.展开更多
Petrogeochemical data are reported for silicic volcanic rocks from the Tianshan Carboniferous rift, with the aim of discussing the petrogenesis of silicic magmas. Incompatible element vs. incompatible element diagrams...Petrogeochemical data are reported for silicic volcanic rocks from the Tianshan Carboniferous rift, with the aim of discussing the petrogenesis of silicic magmas. Incompatible element vs. incompatible element diagrams display smooth positive trends for the Tianshan Carboniferous rift-related volcanic rocks; the isotope ratios of the silicic lavas [^87Sr/^86S(t)=0.699880.70532; eNd(t)=4.76-8.00; ^206pb/^204pb(t)=17.435-18.017; ^207Pb/^204Pb(t)=15.438-15.509; ^208Pb/^204Pb(t) = 37.075-37.723] encompass those of the basic lavas. These data suggest a genetic link between rhyolites and basalts, but are not definitive in establishing whether silicic rocks are related to basalts through fractional crystallization or partial melting. Geochemical modeling of incompatible vs. compatible elements excludes the possibility that silicic melts are generated by the melting of basaltic rocks, and indicates a derivation by fractional crystallization plus moderate assimilation of wall rocks (AFC) starting from intermediate rocks to silicic rocks. Continuous AFC from basalt to rhyolite, with small rates of crustal assimilation, best explains the geochemical data. The presence or absence of bimodal volcanism (the "Daly Gap") might be related to cooling rates of magma chambers. In central and eastern Tianshan, the crust was thinner and the cooling rates of the magma chamber within the crust were greater. These conditions resulted in a rapid fall in temperature within the magma reservoir and caused a narrow temperature interval over which intermediate melts formed, effectively reducing the volume of the intermediate melts.展开更多
In South China four depositional sequences are recognized in the upper part of Upper Devonian and Tournaisian. They are named SQ0 SQ1, SQ2 and SQ3 in ascending order. SQ0 is Strunian (uppermost Devonian), and the othe...In South China four depositional sequences are recognized in the upper part of Upper Devonian and Tournaisian. They are named SQ0 SQ1, SQ2 and SQ3 in ascending order. SQ0 is Strunian (uppermost Devonian), and the other three Tournaisian in age. These four depositional sequences appear to correlate fairly well with the four sequence recognized in Europe, North America and other areas. This may suggest that these sequences are synchronous depos- its resulted from the eustatic changes. The present study on sequence stratigraphy, biostratigraphy and event stratigraphy indicates that in neritic facies areas of South China, the Devonian-Carboniferous boundary, matching the boundary between Siphonodella praesulcata zone and S. sulcata zone in pelagic facies areas, is not only higher than the top of the Cystophrentis zone, but also higher than the top of the Devonian-Carboniferous boundary event bed. In neritic facies areas, the Devonian-Carbonifrerous boundary is marked by the most distinct transgressive surface within the Cystophrentiseudouralina interval zone, i. e. at the base of the TST of the SQ1. This boundary coincides with the top surface of the event bed resulted from the eustatic fall, and approximately corresponds to the basal part of Rseudouralina assemblage zone.展开更多
Geochemical analysis of sandstones from the Sardar Formation (from two stratigraphic successions) in east-central Iran were used for identification of geochemical characterization of sandstones, provenance and tecto...Geochemical analysis of sandstones from the Sardar Formation (from two stratigraphic successions) in east-central Iran were used for identification of geochemical characterization of sandstones, provenance and tectonic setting. Sandstones in the two lithostratigraphic successions have similar chemical compositions suggesting a common provenance. Bulk-rock geochemistry analysis of Carboniferous sandstones from Sardar Formation indicates that they are mainly quartz dominated and are classified as quartzarenites, sublitharenites and subarkoses, derived from acid igneous to intermediate igneous rocks. Discrimination function analysis indicates that the sandstones of Sardar Formation were derived from quartzose sedimentary provenance in a recycled orogenic setting. Also, major and trace elements in sandstones of Sardar Formation (e.g., K2O/Na2O vs. SiO2 ) indicate deposition in a stable passive continental margin (PM). Chemical index of alteration (CIA) for these rocks (65%) suggests a moderate to relatively high degree of weathering in the source area.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
基金benefited from financial supports by Land and Resources Survey Project of China(Grant Nos.1212010611804, 121201120133)the National Natural Science Foundation of China(Grant No.40472044)
文摘The Carboniferous-Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the world, which can be further divided into two sub-provinces: Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360--351 Ma) of the youngest ophiolite and the peak of subduction metamorphism of high pressure-low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ~352 Ma and A-type granite with age of ~358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our summation shows that at least four criteria, being normally used to identify ancient asthenosphere upwelling (or mantle plumes), are met for this large igneous province: (1) surface uplift prior to magmatism; (2) being associated with continental rifting and breakup events; (3) chemical characteristics of asthenosphere (or plume) derived basalts; (4) close links to large-scale mineralization and the uncontaminated basalts, being analogous to those of many "ore-bearing" large igneous provinces, display Sr-Nd isotopic variations between plume and EMI geochemical signatures, These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan--Tarim (central Asia) large igneous province.
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
基金supported financially by the NSFC projects(Grant Nos.U1403291,41802074,41830216,41202044)projects of the China Geological Survey(Grant Nos.1212010811033,12120113096500,12120113094000,DD20160123,DD20160009 and DD20179607)+1 种基金the IGCP 662 projectDDE.
文摘Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanwoling,Zhongposhan and Luodong etc.,intrusions(Qin et al.,2011;Zhang et al.,2017;Xue et al.,2018).These Beishan mafic-ultramafic complexes are composed of peridotite,pyroxenite.
基金financially supported by the China Geological Survey(Grant No.12120115070302, 121201102000150009 and 12120115070301)
文摘In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous-Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous-Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE-NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous-Middle Permian is dominated by llttoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous-Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic melanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic melange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).
基金This study was supported by the National Natural Science Foundation of China Grant No. 4880102
文摘Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain temporal-spatial distribution characteristics. Volcanic fragments were probably derived from two different volcanic sources north and south of the North China Platform, while the magma of the two volcanic sources was probably derived from the lower crust. A new stratigraphic correlation scheme is put forward for the Benxi and Taiyuan Formations in this region on the basis of previous biostratigraphic work with the regionally widespread volcanic event layers as the marker bed for the isochronous stratigraphic correlation on a super-regional scale and in conjunction with the maximum transgressive event layers.
基金supported by the National Natural Science Foundation of China (Nos. 41402138, 41330317 and 51174262)the project of the Science Foundation of Hebei (No. D2012402026)
文摘A total of 48 samples of Carboniferous–Permian coal was taken from the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China. Cu2 coal is the major coalseam of the Daqingshan Coalfield. The samples were analyzed by the ?nductively coupled plasma–mass spectrometer method.The results indicate the content of V, Cr, Cu, Zn, Ga, Se, Ag,Cd, In, Ba, Pb and U of the Cu2 coals from Adaohai Mine is higher than that of the common Chinese coals. Compared to the world hard coals, the content of V, Cu, Zn, Ga, Se, Sr, Ag,Cd, In, Ba and U is relatively high. Compared to the clark values of the crust, only elements Se, Ag, Pb and Bi are enriched in the coal. Most of the elements in coal benches are lower than in those in roofs and partings. The statistical analysis and clustering analysis showed that the modes of trace elements occurrence for the Cu2 coal correlated positively with the minerals. The values of Sr/Ba show that the coal forming environment was influenced both by sea water and fresh water.
文摘The Roaches Grit in the UK Pennine Basin was a complex deep water deltaic sequence deposited during the Late Carboniferous glacial period. The channels of the upper part of the Roaches Grit, deposited towards the end of the cyclothem after the eustatic minimum, contain evidence for very high seasonal discharges related to strong monsoon rainfall in the catchment areas. In some channels, intense turbulence near the delta front, led to knick point recession and deep incision. These channels were filled with sediments during reduced discharge, including very large sets of cross-bedding up to 16 m thick. Channels were short-lived with frequent avulsions. Over time slightly lower discharges formed laterally migrating channels dominated by bar forms. Different discharge-controlled processes operated on the reactivated delta slope. Incised channels generated turbidity currents during floods which transported sediments directly into the basin far from the delta. Migrating channels built mouth bars;resedimentation during floods formed density currents which then deposited sediment on the lower parts of the slope.
基金This paper is financially supported by the National Natural ScienceFoundation of China (No .40172014)the Chinese Academy of Sciences(No . KZCX3-SW-143)the Ministry of Science and Technology ofChina (No .2002CB412602) .
文摘The platform-facies carbonate rocks of the Carboniferous-Permian boundary strata are well developed and outcropped in Xikou (西口), Zhen'an (镇安) County, Shaanxi ( 陕西 ) Province, China. The carbonate diagencsis in the Carboniferous-Permian boundary section at Xikou contains many processes with conspicuous effects, including micritization, cementation, mechanical and chemical compaction, neomorphism, and dissolution. Based on mineralogical composition and microfabrics, the diagenetic environments are distinguished into marine, near surface meteoric and burial environments. Detailed petrographical observation of abundant thin sections integrated with previous studies on sequence stratigraphy reveals that the carbonate diagenesis in the Carboniferous-Permian boundary section is related to the relative stratigraphic position of the rocks in the high-frequency cycles and controlled by the glacioeustatic sea-level changes. There are distinctive differences in diagenetic patterns between the lower transgressive sequence and the upper regressive sequence in a cyclothem. The diagenesis in the lower transgressive sequence is mainly characterized by pressure dissolution and recrystallization of mudstone and wackstone in a burial environment, and the diagenesis in the upper regressive sequence by cementation and leaching of freshwater in a meteoric environment.
文摘During the last five years conodont faunas of 6 Carboniferous-Permian sections of the Eastern and Central Iran have been investigated.Recently fusulinids from these sections(Anarak,Zaladu,Halvan,Tangale -Mokhtar,Kaviz and Bage-Vang) were studied by E.Ja.Leven.The provincial Permian scale in the Tethys (Leven,1980) is based on fusulinids.The occurrence of fusulinids and conodonts in the same samples
文摘The Carboniferous can be divided into four series in the Dianqiangui basin and its adjacent areas, Southwest China: the Yanguanian series, the Datangian series, the Weiningian series and the Mapingian series. The Maping Formation, traditionally used as the lithostraUgraphic unit of the Upper Carboniferous, became an inter-system unit from the Carboniferous to the Permian. Thus, the top part of the Carboniferous and the bottom part of the Permian (Chuaushanian series) constitute a third-order sequence in the Dianqiangui basin and its adjacent areas. In the study area, the Carboniferous system and the Chuanshanian series of the Permian constitute a second-order sequence that can be subdivided into 6 third-order sequences. The bottom boundary of this second-order sequence is an unconformity formed in the principal episode of the Ziyun movement (the second episode), and the top boundary is also an unconformity formed in the principal episode of the Qiangui movement (the second episode). In different paleogeographical backgrounds, the strata from the Carboniferous to the Permian Chuanshanian epoch are marked by different sedimentary features. For example, coal measures and more dolomitic strata are developed in the attached platform; carbonate rocks mainly constitute the isolated platform strata; the inter-platform ditch strata are mainly composed of dark and fine sediments. Therefore, third-order sequences with different architectures of sedimentary-facies succession are formed in different paleogeographical backgrounds. Although the third-order sequences are different in the architecture of sedimentary-succession in space, the processes of their depositional environmental changes due to the third-order relative sea-level changes are simultaneous. Biostratigraphically, the surfaces of the thirdorder sequences can be correlated and traced in space; the framework of sequence stratigraphy from the Carboniferous to the Chuanshanian epoch of the Permian can be established in the Dianqiangui basin and its adjacent areas in terms of two types of facies-changing surfaces as well as two kinds of diachronism in stratigraphic records. The sequence-stratigraphic subdivisions from the Carboniferous to the Permian Chuanshanian epoch in the study area show that the duration of third-order sequences, formed in the convergent period of Pangea, is more than 10 Ma. This could reflect the elementary feature that the period of sea-level change cycles formed in a relatively quiet period of tectonic action is more than 10 Ma. And this succession shows a marked cyclicity which is supposed to be the low-latitude response to the Gondwanan glaciation in the southern hemisphere.
文摘An objection has been lodged against the traditional P/C boundary which were still upholded by International Subcommission on Permian Stratigraphy, International Commission on Stratigraphy, IUGS. And the rationality to take the base of the Montiparus Zone as the P/C boundary is comprehensively demonstrated.
基金This study was supported by the National Natural Science Foundation of China Grant No.4880102.
文摘Four great second-order transgressions occurred during the Late Carboniferous to early Early Permian and they came from both the eastern and western sea areas in the North China Platform. As time went on, depocentres, depositional extent, transgression directions, coastline position and distribution of minable coal seams were changing continuously. The third great second-order transgression occurring at the beginning of the early Early Permian marks the maximum transgression period and before its arrival, i.e. at the close of the late Late Carboniferous, there was the super-regional coal-forming environment. During the second, third and fourth transgressions, the northern North China Platform was all along situated on the transgressive margin of the epicontinental sea and became the major distribution area of thick coal belts because it maintained a coal-forming environment for a long period of time from the close of the late Late Carboniferous to the Early Permian.
基金Supported by the Major State Basic Research Development Program of China(973 Program)"Basic Research on Development of Carbonate Fracture Oil Deposit"Program(2006CB202400)Program ofInstitude of Karst Geology of Chinese Academy of Geological Sciences(2009010)~~
文摘After the break of sedimentation from middle Ordovician to early Carboniferous, Lunnan ancient buried hill received deposition again in the middle of Carboniferous. According to the seismic structural explanation and analysis of structural background, the research was carried out upon Ordovician soluble stratum and the distribution of soluble regions to the east of the 7th well in Lungu. In light of impression method and residual thickness method, and through the analysis of corresponding relations between upper and lower strata of ancient weathering crust in the research area, the gap between the bottom of doublet limestone, the symbol stratum in Carboniferous regions, and Ordovician buried hill stratum was filled. By applying impression method and residual thickness method, pre-Carboniferous paleokarst geomorphology in this region was rehabilitated, so as to prepare for the identification of ancient geomorphology. Geomorphic units such as karst highlands, karst gentle slopes and karst peak-cluster valleys were distinguished as alternative objective regions for further reservoir prediction work.
基金the National Natural Science Foundation of China(Grant 40072077) the Tarim Oil Field Company.PetroChina(Grant 2098050230).
文摘The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rocks, carbonates and cherts. Some ultra-basic rocks (blocks) punctuate the formation. The formation was variously assigned to Silurian-Middle Devonian, Silurian-Lower Devonian, and pre-Devonian, mainly based on Atrypa bodini Mansuy, Hypothyridina parallelepipedia (Brour.) and Prismatophyllum hexagonum Yoh collected from the limestone interlayers, respectively. However, radiolarian fossils obtained from 24 chert specimens of the Wupata'erkan Group, mainly include Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon, Albaillella sp. cf. A. indensis Won, Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto, Albaillella sp. and Latentifistulidae gen. et. sp. indet., are earliest Carboniferous and Late Permian. The earliest Carboniferous assemblage is characterized by Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon and Albaillella sp. cf. A. indensis Won, and the Late Permian assemblage by Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto. This new stratigraphic evidence indicates that the Wupata'erkan Group is possibly composed of rocks with different ages from Silurian to Permian, and therefore, it is probably an ophiolite melange. The discovery of Late Permian Albaillella sp. cf. A. excelsa provides more reliable evidence supporting the existence of a Permian relic ancient oceanic basin in the western part of Xinjiang South Tianshan.
文摘The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can be classified into two major magma types: (1) the low-Ti/Y type situated in the eastern-central Tianshan area, which exhibits low Ti/Y (<500), Ce/Yb (<15) and SiO2 (43-55%), and relatively high Fe2O3T (6.4-11.5%); (2) the high-Ti/Y type situated in the western Tianshan area, which has high Ti/Y (>500), Ce/Yb (>11) and SiO2 (49-55%), and relatively low Fe2O3T (5.8-7.8%). Elemental data suggest that chemical variations of the low-Ti/Y and high-Ti/Y lavas cannot be explained by fractional crystallization from a common parental magma. The Tianshan Carboniferous basic lavas originated most likely from an OIB-like asthenospheric mantle source (87Sr/86Sr(t) ≈ 0.703-0.705, eNd(0 = +4 to +7). The crustal contamination and continental lithospheric mantle have also contributed significantly to the formation of the basic lavas of the Tianshan Carboniferous post-collisional rift. The silicic lavas were probably generated by partial melting of the crust. The data of this study show that spatial petrogeochemical variations exist in the Carboniferous post-collisional rift volcanics province in the Tianshan region. Occurrence of the thickest volcanics dominated by tholeiitic lavas may imply that the center of the mantle-melting anomaly (mantle plume) was in the eastern Tianshan area at that time. The basic volcanic magmas in the eastern Tianshan area were generated by a relatively high degree of partial melting of the mantle source around the spinel-garnet transition zone, whereas the alkaline basaltic lavas are of the dominant magma type in the western Tianshan area, which were generated by a low degree of partial melting of the mantle source within the stable garnet region, thus the basic lavas of the western Tianshan area might have resulted from relatively thick lithosphere and low geothermal gradient.
基金support from the Land and Resources Survey Project of China(Grant nos.20011000022,200313000063)the National Natural Science Foundation of China(Grant No.40472044).
文摘Petrogeochemical data are reported for silicic volcanic rocks from the Tianshan Carboniferous rift, with the aim of discussing the petrogenesis of silicic magmas. Incompatible element vs. incompatible element diagrams display smooth positive trends for the Tianshan Carboniferous rift-related volcanic rocks; the isotope ratios of the silicic lavas [^87Sr/^86S(t)=0.699880.70532; eNd(t)=4.76-8.00; ^206pb/^204pb(t)=17.435-18.017; ^207Pb/^204Pb(t)=15.438-15.509; ^208Pb/^204Pb(t) = 37.075-37.723] encompass those of the basic lavas. These data suggest a genetic link between rhyolites and basalts, but are not definitive in establishing whether silicic rocks are related to basalts through fractional crystallization or partial melting. Geochemical modeling of incompatible vs. compatible elements excludes the possibility that silicic melts are generated by the melting of basaltic rocks, and indicates a derivation by fractional crystallization plus moderate assimilation of wall rocks (AFC) starting from intermediate rocks to silicic rocks. Continuous AFC from basalt to rhyolite, with small rates of crustal assimilation, best explains the geochemical data. The presence or absence of bimodal volcanism (the "Daly Gap") might be related to cooling rates of magma chambers. In central and eastern Tianshan, the crust was thinner and the cooling rates of the magma chamber within the crust were greater. These conditions resulted in a rapid fall in temperature within the magma reservoir and caused a narrow temperature interval over which intermediate melts formed, effectively reducing the volume of the intermediate melts.
文摘In South China four depositional sequences are recognized in the upper part of Upper Devonian and Tournaisian. They are named SQ0 SQ1, SQ2 and SQ3 in ascending order. SQ0 is Strunian (uppermost Devonian), and the other three Tournaisian in age. These four depositional sequences appear to correlate fairly well with the four sequence recognized in Europe, North America and other areas. This may suggest that these sequences are synchronous depos- its resulted from the eustatic changes. The present study on sequence stratigraphy, biostratigraphy and event stratigraphy indicates that in neritic facies areas of South China, the Devonian-Carboniferous boundary, matching the boundary between Siphonodella praesulcata zone and S. sulcata zone in pelagic facies areas, is not only higher than the top of the Cystophrentis zone, but also higher than the top of the Devonian-Carboniferous boundary event bed. In neritic facies areas, the Devonian-Carbonifrerous boundary is marked by the most distinct transgressive surface within the Cystophrentiseudouralina interval zone, i. e. at the base of the TST of the SQ1. This boundary coincides with the top surface of the event bed resulted from the eustatic fall, and approximately corresponds to the basal part of Rseudouralina assemblage zone.
基金supported by a grant to the senior author from Faculty of Sciences, Ferdowsi University of Mashhad
文摘Geochemical analysis of sandstones from the Sardar Formation (from two stratigraphic successions) in east-central Iran were used for identification of geochemical characterization of sandstones, provenance and tectonic setting. Sandstones in the two lithostratigraphic successions have similar chemical compositions suggesting a common provenance. Bulk-rock geochemistry analysis of Carboniferous sandstones from Sardar Formation indicates that they are mainly quartz dominated and are classified as quartzarenites, sublitharenites and subarkoses, derived from acid igneous to intermediate igneous rocks. Discrimination function analysis indicates that the sandstones of Sardar Formation were derived from quartzose sedimentary provenance in a recycled orogenic setting. Also, major and trace elements in sandstones of Sardar Formation (e.g., K2O/Na2O vs. SiO2 ) indicate deposition in a stable passive continental margin (PM). Chemical index of alteration (CIA) for these rocks (65%) suggests a moderate to relatively high degree of weathering in the source area.