Ground-level ozone contamination has been globally an urban air quality issue,particularly for China,which has recently made significant progress in purifying its sky.Unregulated exhaust emissions from motor vehicles,...Ground-level ozone contamination has been globally an urban air quality issue,particularly for China,which has recently made significant progress in purifying its sky.Unregulated exhaust emissions from motor vehicles,predominantly carbonyls and volatile organic compounds(VOCs),are among the leading contributors to ozone formation.In this chassislevel study,the unregulated emissions from five China-5 certified gasoline/CNG bi-fuel taxis,along with their ozone forming potential(OFP),were evaluated.It is found that carbonyls and VOCs were mainly emitted during the starting phase no matter the engine was cold or hot.Compared to gasoline,CNG fueling reduced VOCs emissions on a large scale,especially in the starting phase,but had elevated carbonyls.On a fleet average,CNG fueling derived 15%and 46%less OFP than gasoline in cold-and hot-start tests,respectively.VOCs contributed to over 90%of the total OFP of the exhaust.In terms of alleviating ground-level ozone contamination,CNG is a feasible alternative to gasoline on light-duty vehicles.展开更多
Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter,for which the reason have not been...Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter,for which the reason have not been clearly elucidated.Here we measured carbonyl compounds and other trace gasses together with PM_(2.5)over urban Jinan in North China Plain during the winter.Markedly higher carbonyl concentrations(average:14.63±4.21 ppbv)were found during wintertime haze pollution,about one to three-times relative to those on nonhaze days,with slight difference in chemical composition except formaldehyde(HCHO).HCHO(3.68 ppbv),acetone(3.17 ppbv),and acetaldehyde(CH_3CHO)(2.83 ppbv)were the three most abundant species,accounting for~75% of the total carbonylson both haze and non-haze days.Results from observational-based model(OBM)with atmospheric oxidation capacity(AOC)indicated that AOC significantly increased with the increasing carbonyls during the winter haze events.Carbonyl photolysis have supplied key oxidants such as RO_(2) and HO_(2),and thereby enhancing the formation of fine particles and secondary organic aerosols,elucidating the observed haze-carbonyls inter-correlation.Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources.1-butene was further confirmed to be the major precursor for HCHO.This study confirms the great contribution of carbonyls to AOC,and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.展开更多
Oxygen-isotopic labelings play important roles in identifying and understanding chemical and biological processes.Direct C=O to C=^(18)O or C=^(17)O conversion in a single step leading to labeled compounds can allevia...Oxygen-isotopic labelings play important roles in identifying and understanding chemical and biological processes.Direct C=O to C=^(18)O or C=^(17)O conversion in a single step leading to labeled compounds can alleviate synthetic burdens without the need for resynthesis.Here we describe a photocatalytic oxygenisotopic labeling protocol that can efficiently and selectively install ^(18)O and ^(17)O on carbonyls of ketones and aldehydes via oxygen isotope exchange with oxygen-isotopic waters(H_(2)^(18)O or H_(2)^(17)O)as the sources of oxygen isotopes,in which light and oxygen-enabled sodium alkanesulfinates catalyzed this process.This strategy was extended to the in-situ formed ketones from the photocatalytic aerobic oxidation of alkyl arenes and secondary alcohols.Furthermore,reduction of the oxygen-isotopically labeled aldehydes with NaBH_(4) provided the corresponding oxygen-isotopically labeled primary alcohols.We believe that the oxygen-isotopically labeling method will be widely used in chemistry,biology and medicine fields.展开更多
The atmospheric concentrations of carbonyls and BTEX (benzene,toluene,ethylbenzene,m,p-xylene and o-xylene) were measured simultaneously at a same sampling site in Beijing from September 2008 to August 2010.The aver...The atmospheric concentrations of carbonyls and BTEX (benzene,toluene,ethylbenzene,m,p-xylene and o-xylene) were measured simultaneously at a same sampling site in Beijing from September 2008 to August 2010.The average concentrations of the total measured carbonyls during autumn,winter,spring,and summer were 37.7,31.3,39.7,50.5 μg/m 3,respectively,and maximal values for their diurnal variations usually happened at noontime.In contrast to carbonyls,the average concentrations of the total measured BTEX during the four seasons were 27.2,31.9,23.2,19.1 μg/m 3,respectively,andminimal values for their diurnal variations always occurred in the early afternoon.The average concentration for carbonyls increased about 24% from September 2008–August 2009 to September 2009–August 2010,for BTEX,increased about 15%.Integrated life time cancer risks for three carcinogens (benzene,formaldehyde and acetaldehyde) in Beijing exceeded the value of 1E-06,and the hazard quotient (HQ) of non-cancer risk of exposure to formaldehyde exceeded unity.展开更多
Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation proce...Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder(CIP) with TiO_(2) was designed. Given the TiO2coating, the Z of the CIP@TiO_(2) composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO_(2) was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO_(2)composite was improved substantially, the minimum reflection loss reached-46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO_(2)showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO_(2) as about 400℃,whereas the uncoated CIP had an oxidation starting temperature of approximately 250℃. Moreover, the largest oxidation rate temperature of CIP@TiO_(2) increased to around 550℃. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design.展开更多
Due to their tunable acidity,shape selectivity,and excellent stability,zeolites are of great importance as solid acid materials in industrial catalysis.Tuning the properties of the acid sites in zeolites allows for th...Due to their tunable acidity,shape selectivity,and excellent stability,zeolites are of great importance as solid acid materials in industrial catalysis.Tuning the properties of the acid sites in zeolites allows for the rational design and fabrication of catalysts for target reactions.Dimethyl ether(DME)carbonylation,a critical chain-growth reaction for C1 resource utilization,is selectively catalyzed by the Brønsted acid sites within the eight-membered rings(8-MRs)of mordenite(MOR).It is anticipated that strengthening the Brønsted acidity—particularly in 8-MRs—will improve the catalytic performance of MOR.In this work,density functional theory(DFT)calculations are first employed and the results used to design a modified MOR with stannum(Sn)and to predict the corresponding changes in acidity.Guided by the theoretical studies,a series of Sn-modified MOR are synthesized via a defect-engineering and subsequent heteroatom-substitution strategy.After partial desilication,isolated tetrahedral Sn species in an open configuration are successfully synthesized for the first time,within which tetrahedrally coordinated Al sites are preserved.An acidic characterization is used to confirm that the acidity of the Brønsted acid sites is enhanced by the introduction of the Sn species;as a result,the sample exhibits excellent activity in DME carbonylation reaction.Kinetic and DFT studies reveal that this strengthened acidity facilitates the adsorption of DME and reduces the activation barriers of DME dissociation and acetyl formation,accounting for the improved activity.The work demonstrates mechanistic insights into the promoting effects of strong acidity on DME carbonylation and offers a promising strategy to precisely control the acidic strength of zeolites.展开更多
Ambient carbonyls were continuously observed in the field during a heavy ozone pollution episode in Chengdu, China from August 4 to August 19, 2019, and the pollution characteristics, atmospheric photochemical reactiv...Ambient carbonyls were continuously observed in the field during a heavy ozone pollution episode in Chengdu, China from August 4 to August 19, 2019, and the pollution characteristics, atmospheric photochemical reactivity, human health risk, and sources of carbonyls were analyzed. Fifteen carbonyls were quantified with average total mixing ratios of 20.38 ppbv Formaldehyde(9.86 ppbv), acetone(4.41 ppbv), and acetaldehyde(3.57 ppbv) were the three most abundant carbonyls. During the heavy ozone pollution episode, the concentration of carbonyls was found to be higher on pollution days than on the clean days, and relatively higher in the daytime, especially at noon on the pollution days. This was influenced by the intensity of photochemical reactions and precipitation. The “weekend effect” with the concentration of carbonyls was higher on the weekends than on the weekdays was pointed out. Formaldehyde, acetaldehyde and hexaldehyde were the dominant oxidative species during the observation. The carcinogenic and non-carcinogenic risk values of formaldehyde and acetaldehyde were higher on pollution days than on clean days, and these values were higher compared with those of other cities in China and abroad. Long-term exposure to these compounds should therefore be avoided. Diagnostic ratios and correlation analysis together with backward trajectory analysis showed that primary emission and secondary formation accounted 66%-76% and 24%–34% of carbonyls in Chengdu, respectively, with primary emission being the main sources of carbonyls, and carbonyls from the surrounding cities and emission from natural sources also had a significant contribution to the carbonyls in Chengdu.展开更多
Homoleptic mononuclear and binuclear ruthenium carbonyls Ru(CO)n(n=3―5) and Ru2(CO)n(n=8,9) have been investigated using density functional theory.Sixteen isomers are obtained.For Ru(CO)5,the lowest-energy structure ...Homoleptic mononuclear and binuclear ruthenium carbonyls Ru(CO)n(n=3―5) and Ru2(CO)n(n=8,9) have been investigated using density functional theory.Sixteen isomers are obtained.For Ru(CO)5,the lowest-energy structure is the singlet D3h trigonal bipyramid.Similar to Os(CO)5,the distorted square pyramid isomer with C2v symmetry lies ~7 kJ·mol-1 higher in energy.For the unsaturated mononuclear ruthenium carbonyls Ru(CO)4 and Ru(CO)3,a singlet structure with C2v symmetry and a Cs bent Tshaped structure are the lowest-energy structures,respectively.The global minimum for the Ru2(CO)9 is a singly bridged(CO)4Ru(μ-CO)Ru(CO)4 structure.A triply bridged Ru2(CO)6(μ-CO)3 structure analogous to the known Fe2(CO)9 structure is predicted to lie very close in energy to the global minimum.For Ru2(CO)8,the doubly bridged C2 structure is predicted to be the global minimum.For the lowest-energy structures of M2(CO)n(M=Fe,Ru,Os,n=9,8),it is found that both iron and ruthenium are favored to form structures containing more bridging carbonyl groups,while osmium prefers to have structures with less bridging carbonyl groups.The study of dissociation energy shows that the dissociation of Ru2(CO)9 into the mononuclear fragments Ru(CO)5+Ru(CO)4 is a less energetically demanding process than the dissociation of one carbonyl group from Ru2(CO)9 to give Ru2(CO)8.展开更多
Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sit...Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways....Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.展开更多
Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The dire...Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified.展开更多
The measurements of atmospheric carbonyls concentrations in Beijing were conducted from 12 July to 8 October, 2008, covering the periods of the 2008 Olympic Games and Paralympic Games. Six carbonyls, including formald...The measurements of atmospheric carbonyls concentrations in Beijing were conducted from 12 July to 8 October, 2008, covering the periods of the 2008 Olympic Games and Paralympic Games. Six carbonyls, including formaldehyde, acetaldehyde, acetone, butyraldehyde, valeraldehyde, and hexaldehyde, were identified in all air samples. The total average concentrations of these carbonyls before, during, and after traffic restriction were (48.1 ± 15.2), (36.6 ± 14.5) and (23.4± 12.3) μg/m^3, respectively. Compared with the period after traffic restriction, the distinct high concentrations of the carbonyls before and during traffic restriction were primarily ascribed to the remarkable contribution of photochemical reactions. With respect to our previous investigation in the summer of 2005, the reductions of formaldehyde, acetaldehyde and acetone during traffic restriction period were about 64%, 47% and 27%, respectively, indicating that the air cleaning actions adopted by the Chinese government for the two games were efficient. The lowest levels of atmospheric carbonyls and the extremely high composition proportion of acetone after the traffic restriction were mainly attributed to the long-term effect of the control measures for the two games.展开更多
Volatile organic compounds (VOCs) and carbonyl compounds were measured both indoors and outdoors in 50 residences of Beijing in heating (December, 2011) and non-heating seasons (April/May, 2012). SUMMA canisters...Volatile organic compounds (VOCs) and carbonyl compounds were measured both indoors and outdoors in 50 residences of Beijing in heating (December, 2011) and non-heating seasons (April/May, 2012). SUMMA canisters for VOCs and diffusive samplers for carbonyl compounds were deployed for 24 h at each site, and 94 compounds were quantified. Formaldehyde, acetone and acetaldehyde were the most abundant carbonyl compounds both indoors and outdoors with indoor median concentrations being 32.1, 21.7 and 15.3 μg·m-3, respec- tively. Ethane (17.6 μg·m-3), toluene (14.4 μg·m-3), pro- pane (11.2 μg·m-3), ethene (8.40 μg·m-3), n-butane (6.87 μg·m-3), and benzene (5.95 μg·m-3) showed the high median concentrations in indoor air. Dichloromethane, p- dichlorobenzene (p-DCB) and toluene exhibited extremely high levels in some residences, which were related with a number of indoor emission sources. Moreover, isoprene, p- dichlorobenzene and carbonyls showed median indoor/ outdoor (I/O) ratios larger than 3, indicating their indoor sources were prevailing. Chlorinated compounds like CFCs were mainly from outdoor sources for their I/O ratios being less than 1. In addition, indoor concentrations between two sampling seasons varied with different compounds. Carbonyl compounds and some chlorinated compounds had higher concentrations in the non-heating season, while alkanes, alkenes, aromatic compounds showed an increase in the heating season. Indoor concentration of VOCs and carbonyls were influenced by locations, interior decorations and indoor activities, however the specific sources for indoor VOCs and carbonyls could not be easily identified. The findings obtained in this study would significantly enhance our understandings on the prevalent and abundant species of VOCs as well as their concentrations and sources in Beijing residences.展开更多
In their recent Journal of Environmental Sciences publication,Wang and colleagues provide field evidence that industrial activities can contribute substantially to atmospheric carbonyl concentrations(Wang et al.,2015...In their recent Journal of Environmental Sciences publication,Wang and colleagues provide field evidence that industrial activities can contribute substantially to atmospheric carbonyl concentrations(Wang et al.,2015).These results may helpto explain underestimations of carbonyl emissions in currently available emission inventories,and highlight the need for an improved understanding of industrial sources of this class of compounds.展开更多
Aromatic carbonyls have evoked sustained attention in the field of room-temperature phosphorescence(RTP).The introduction of carbonyl groups is a general way to achieve RTP for their effective intersystem crossing(ISC...Aromatic carbonyls have evoked sustained attention in the field of room-temperature phosphorescence(RTP).The introduction of carbonyl groups is a general way to achieve RTP for their effective intersystem crossing(ISC)by improving spin-orbit coupling(SOC).With further molecular design and processing strategies,aromatic carbonyls materials with multi-functional and high efficiency ultralong organic phosphorescence(UOP)can be obtained.This review summarizes the mechanism of aromatic carbonyls with UOP in pure aromatic carbonyls and their multi-component systems.Some detailed strategies for improving UOP performance are further introduced.The summary and outlook are presented to expound on the advances and lack of aromatic carbonyls.Further development directions and requirements are also put forward.展开更多
Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion ap...Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion approaches via photo-,electro-,and photoelectro-catalysis to oxidize alcohols into high value-added corresponding carbonyl compounds as well as the possible simultaneous production of clean fuel hydrogen(H_(2))under mild conditions are promising to substitute the traditional approach to form greener and sustainable reaction systems and thus have aroused tremendous investigations.In this review,the state-of-the-art photocatalytic,electrocatalytic,and photoelectrocatalytic strategies for selective oxidation of different types of alcohols(aromatic and aliphatic alcohols,single alcohol,and polyols,etc.)as well as the simultaneous production of H_(2) in certain systems are discussed.The design of photocatalysts,electrocatalysts,and photoelectrocatalysts as well as reaction mechanism is summarized and discussed in detail.In the end,current challenges and future research directions are proposed.It is expected that this review will not only deepen the understanding of environmentally friendly catalytic systems for alcohol conversion as well as H_(2) production,but also enlighten significance and inspirations for the follow-up study of selective oxidation of various types of organic molecules to value-added chemicals.展开更多
The Ru-catalyzed carbonylation of alkenes with CO_(2)as a C1 surrogate and imidazole chlorides as the promotor is investigated by a combination of computational and experimental study.The conversion rate of CO_(2)to C...The Ru-catalyzed carbonylation of alkenes with CO_(2)as a C1 surrogate and imidazole chlorides as the promotor is investigated by a combination of computational and experimental study.The conversion rate of CO_(2)to CO is positively correlated with the efficiency of both hydroesterification and hydroformylation,which is found facilitated in the presence of chloride additives with a decreasing order of BmimCl~B3MimCl>BmmimCl~LiCl.Taking the hydroesterification with MeOH as a representative example,BmimCl bearing C-H functionality at the C^(2)site of the cation assists the reduction of CO_(2)to CO as a hydrogen donor medium,with the anion and cation acting in a synergistic fashion.Subsequent insertion of CO_(2)into the formed Ru-H bond with the assistance of chloride anion produces the Ru-COOH species,which ultimately accelerates the activation of CO_(2).展开更多
The paper explores the possibilities of using carbonyl iron in the form of a powder for the manufacture of radar-absorbing paints-reducing the radar signature of the objects that they cover.The attenuation values in t...The paper explores the possibilities of using carbonyl iron in the form of a powder for the manufacture of radar-absorbing paints-reducing the radar signature of the objects that they cover.The attenuation values in the range of 4-18 GHz for various coating thicknesses,ranging from 0.5 to 2.00 mm with 0.5 mm increment,and for different absorber content-75%and 80%,as well as the use of two different binders in the form of epoxy resins with hardeners,were investigated.For the frequency of 18 GHz and a 1.5 mm thick coating with a 75%absorber content,Epidian 112 resin and Saduramid 10/50 hardener used as a binder,and the maximum attenuation level obtained equalled 20.2 d B at 16 GHz.Additionally,the absorber particle size ranging from 3 to 4μm and its higher mass content resulted in achieving the reflection loss above-12 d B in the entire 8-12.5 GHz range for layers between 1-and 1.5 mm thickness.The qualitative assessment of the tested samples in the context of camouflage in the radar range was also performed,using statistical analysis.展开更多
Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane cont...Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane contactor has been proved in our previous study. In this paper, the effect of membrane microstructure on process performance was further investigated. Three porous PTFE hollow fibers with different pore sizes and one polydimethylsiloxane(PDMS)/PTFE composite membrane with dense layer were fabricated for comparison. The physical and chemical properties of four membranes, including chemical composition, morphology, contact angle, liquid entry pressure, thermodynamic analysis and gas permeability, were systemically characterized. Experiments of formaldehyde carbonylation under different reaction conditions were conducted. The results indicated that the yield of glycolic acid increased with decreasing pore size for porous membranes, which was due to the improvement of wetting behavior. The dense layer of PDMS in composite hollow fiber could effectively prevent the solvent from entering membrane pores, thus the membrane exhibited the best performance. At reaction temperature of 120℃ and operation pressure of 3.0 MPa, the yield of glycolic acid was always higher than 90% as the mass ratio of trioxane and phosphotungstic acid increased from 0.2:1 to 0.8:1. The highest turnover frequency was up to 26.37 mol·g^(-1)·h^(-1). This study provided a reference for the understanding and optimization of membrane contactors for the synthesis of glycolic acid using solvent with low surface tension.展开更多
基金received funding support from the National Natural Science Foundation of China (No.52272342)the National Engineering Laboratory for Mobile Source Emission Control Technology,China (No.NELMS2018A17).
文摘Ground-level ozone contamination has been globally an urban air quality issue,particularly for China,which has recently made significant progress in purifying its sky.Unregulated exhaust emissions from motor vehicles,predominantly carbonyls and volatile organic compounds(VOCs),are among the leading contributors to ozone formation.In this chassislevel study,the unregulated emissions from five China-5 certified gasoline/CNG bi-fuel taxis,along with their ozone forming potential(OFP),were evaluated.It is found that carbonyls and VOCs were mainly emitted during the starting phase no matter the engine was cold or hot.Compared to gasoline,CNG fueling reduced VOCs emissions on a large scale,especially in the starting phase,but had elevated carbonyls.On a fleet average,CNG fueling derived 15%and 46%less OFP than gasoline in cold-and hot-start tests,respectively.VOCs contributed to over 90%of the total OFP of the exhaust.In terms of alleviating ground-level ozone contamination,CNG is a feasible alternative to gasoline on light-duty vehicles.
基金supported by the National Natural Science Foundation of China(Nos.42005092,42275127,42075112and 41775127)the Natural Science Foundation of Shandong Province(No.ZR2020QD058)。
文摘Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter,for which the reason have not been clearly elucidated.Here we measured carbonyl compounds and other trace gasses together with PM_(2.5)over urban Jinan in North China Plain during the winter.Markedly higher carbonyl concentrations(average:14.63±4.21 ppbv)were found during wintertime haze pollution,about one to three-times relative to those on nonhaze days,with slight difference in chemical composition except formaldehyde(HCHO).HCHO(3.68 ppbv),acetone(3.17 ppbv),and acetaldehyde(CH_3CHO)(2.83 ppbv)were the three most abundant species,accounting for~75% of the total carbonylson both haze and non-haze days.Results from observational-based model(OBM)with atmospheric oxidation capacity(AOC)indicated that AOC significantly increased with the increasing carbonyls during the winter haze events.Carbonyl photolysis have supplied key oxidants such as RO_(2) and HO_(2),and thereby enhancing the formation of fine particles and secondary organic aerosols,elucidating the observed haze-carbonyls inter-correlation.Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources.1-butene was further confirmed to be the major precursor for HCHO.This study confirms the great contribution of carbonyls to AOC,and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.
基金supported by Natural Science Foundation of Beijing Municipality(No.2222011)National Natural Science Foundation of China(No.22077074)China Postdoctoral Science Foundation(No.2021M701869).
文摘Oxygen-isotopic labelings play important roles in identifying and understanding chemical and biological processes.Direct C=O to C=^(18)O or C=^(17)O conversion in a single step leading to labeled compounds can alleviate synthetic burdens without the need for resynthesis.Here we describe a photocatalytic oxygenisotopic labeling protocol that can efficiently and selectively install ^(18)O and ^(17)O on carbonyls of ketones and aldehydes via oxygen isotope exchange with oxygen-isotopic waters(H_(2)^(18)O or H_(2)^(17)O)as the sources of oxygen isotopes,in which light and oxygen-enabled sodium alkanesulfinates catalyzed this process.This strategy was extended to the in-situ formed ketones from the photocatalytic aerobic oxidation of alkyl arenes and secondary alcohols.Furthermore,reduction of the oxygen-isotopically labeled aldehydes with NaBH_(4) provided the corresponding oxygen-isotopically labeled primary alcohols.We believe that the oxygen-isotopically labeling method will be widely used in chemistry,biology and medicine fields.
基金supported by the National Natural Science Foundation of China (No. 41075094,40830101, 21177140,20977097)the National Basic Research and the Development Program (973) of China (No. 2010CB732304)+1 种基金the Special Fund for Environmental Research in the Public Interest (No. 201009001)the National Water Special Project (No. 2009ZX07210-009)
文摘The atmospheric concentrations of carbonyls and BTEX (benzene,toluene,ethylbenzene,m,p-xylene and o-xylene) were measured simultaneously at a same sampling site in Beijing from September 2008 to August 2010.The average concentrations of the total measured carbonyls during autumn,winter,spring,and summer were 37.7,31.3,39.7,50.5 μg/m 3,respectively,and maximal values for their diurnal variations usually happened at noontime.In contrast to carbonyls,the average concentrations of the total measured BTEX during the four seasons were 27.2,31.9,23.2,19.1 μg/m 3,respectively,andminimal values for their diurnal variations always occurred in the early afternoon.The average concentration for carbonyls increased about 24% from September 2008–August 2009 to September 2009–August 2010,for BTEX,increased about 15%.Integrated life time cancer risks for three carcinogens (benzene,formaldehyde and acetaldehyde) in Beijing exceeded the value of 1E-06,and the hazard quotient (HQ) of non-cancer risk of exposure to formaldehyde exceeded unity.
基金financially supported by the National Natural Science Foundation of China (No.51872058)the Supporting Program for Innovation Team of Outstanding Youth in Colleges and Universities of Shandong Province(No.2020KJA005)。
文摘Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder(CIP) with TiO_(2) was designed. Given the TiO2coating, the Z of the CIP@TiO_(2) composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO_(2) was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO_(2)composite was improved substantially, the minimum reflection loss reached-46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO_(2)showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO_(2) as about 400℃,whereas the uncoated CIP had an oxidation starting temperature of approximately 250℃. Moreover, the largest oxidation rate temperature of CIP@TiO_(2) increased to around 550℃. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design.
基金the National Natural Science Foundation of China(21978209 and 22008177)the Royal Society International Collaboration Award(ICA\R1\180317).
文摘Due to their tunable acidity,shape selectivity,and excellent stability,zeolites are of great importance as solid acid materials in industrial catalysis.Tuning the properties of the acid sites in zeolites allows for the rational design and fabrication of catalysts for target reactions.Dimethyl ether(DME)carbonylation,a critical chain-growth reaction for C1 resource utilization,is selectively catalyzed by the Brønsted acid sites within the eight-membered rings(8-MRs)of mordenite(MOR).It is anticipated that strengthening the Brønsted acidity—particularly in 8-MRs—will improve the catalytic performance of MOR.In this work,density functional theory(DFT)calculations are first employed and the results used to design a modified MOR with stannum(Sn)and to predict the corresponding changes in acidity.Guided by the theoretical studies,a series of Sn-modified MOR are synthesized via a defect-engineering and subsequent heteroatom-substitution strategy.After partial desilication,isolated tetrahedral Sn species in an open configuration are successfully synthesized for the first time,within which tetrahedrally coordinated Al sites are preserved.An acidic characterization is used to confirm that the acidity of the Brønsted acid sites is enhanced by the introduction of the Sn species;as a result,the sample exhibits excellent activity in DME carbonylation reaction.Kinetic and DFT studies reveal that this strengthened acidity facilitates the adsorption of DME and reduces the activation barriers of DME dissociation and acetyl formation,accounting for the improved activity.The work demonstrates mechanistic insights into the promoting effects of strong acidity on DME carbonylation and offers a promising strategy to precisely control the acidic strength of zeolites.
基金financial support from the project Analysis of Multiple Causes of Atmospheric Ozone Pollution in Urban Agglomerations of Chengdu Plain and Development of Management,Prevention,Control System of Sichuan AcademyofEnvironmental Sciences (No.510201201905430)the Fundamental Research Funds for Central Public Welfare Scientific Research Institutes of China,Chinese Research Academy of Environmental Sciences (No.2019YSKY-012,No.2019YSKY-018,No.2019YSKY-013)+1 种基金Peking UniversityChengdu Academy of Environmental Protection and Sciences for their vigorous support during the field observation.
文摘Ambient carbonyls were continuously observed in the field during a heavy ozone pollution episode in Chengdu, China from August 4 to August 19, 2019, and the pollution characteristics, atmospheric photochemical reactivity, human health risk, and sources of carbonyls were analyzed. Fifteen carbonyls were quantified with average total mixing ratios of 20.38 ppbv Formaldehyde(9.86 ppbv), acetone(4.41 ppbv), and acetaldehyde(3.57 ppbv) were the three most abundant carbonyls. During the heavy ozone pollution episode, the concentration of carbonyls was found to be higher on pollution days than on the clean days, and relatively higher in the daytime, especially at noon on the pollution days. This was influenced by the intensity of photochemical reactions and precipitation. The “weekend effect” with the concentration of carbonyls was higher on the weekends than on the weekdays was pointed out. Formaldehyde, acetaldehyde and hexaldehyde were the dominant oxidative species during the observation. The carcinogenic and non-carcinogenic risk values of formaldehyde and acetaldehyde were higher on pollution days than on clean days, and these values were higher compared with those of other cities in China and abroad. Long-term exposure to these compounds should therefore be avoided. Diagnostic ratios and correlation analysis together with backward trajectory analysis showed that primary emission and secondary formation accounted 66%-76% and 24%–34% of carbonyls in Chengdu, respectively, with primary emission being the main sources of carbonyls, and carbonyls from the surrounding cities and emission from natural sources also had a significant contribution to the carbonyls in Chengdu.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20873045 and 20973066)
文摘Homoleptic mononuclear and binuclear ruthenium carbonyls Ru(CO)n(n=3―5) and Ru2(CO)n(n=8,9) have been investigated using density functional theory.Sixteen isomers are obtained.For Ru(CO)5,the lowest-energy structure is the singlet D3h trigonal bipyramid.Similar to Os(CO)5,the distorted square pyramid isomer with C2v symmetry lies ~7 kJ·mol-1 higher in energy.For the unsaturated mononuclear ruthenium carbonyls Ru(CO)4 and Ru(CO)3,a singlet structure with C2v symmetry and a Cs bent Tshaped structure are the lowest-energy structures,respectively.The global minimum for the Ru2(CO)9 is a singly bridged(CO)4Ru(μ-CO)Ru(CO)4 structure.A triply bridged Ru2(CO)6(μ-CO)3 structure analogous to the known Fe2(CO)9 structure is predicted to lie very close in energy to the global minimum.For Ru2(CO)8,the doubly bridged C2 structure is predicted to be the global minimum.For the lowest-energy structures of M2(CO)n(M=Fe,Ru,Os,n=9,8),it is found that both iron and ruthenium are favored to form structures containing more bridging carbonyl groups,while osmium prefers to have structures with less bridging carbonyl groups.The study of dissociation energy shows that the dissociation of Ru2(CO)9 into the mononuclear fragments Ru(CO)5+Ru(CO)4 is a less energetically demanding process than the dissociation of one carbonyl group from Ru2(CO)9 to give Ru2(CO)8.
基金supported by China National Natural Science Foundation(22008260,21908123)。
文摘Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金The National Key Research and Development Program of Ministry of Science and Technology(No.2022YFA1504602)Natural Science Foundation of Jiangsu Province(No.BK20211094)National Natural Science Foundation of China(No.22302214,21972152,U22B20137).
文摘Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.
基金Financial support from the National Key Research and Development Program of China(2022YFB3805602)the National Natural Science Foundation of China(22138001,22288102)the Fundamental Research Funds for the Central Universities。
文摘Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified.
基金supported by the National Natural Science Foundation of China (No. 20977097,40830101, 41075094)the Chinese Academy of Sciences (No. KZCX2-YW-Q02-03)+1 种基金the Platform Construction of Introducing Central Resources in Beijing (No.PXM2008 178305 06995)the National Basic Research and Development Program (973) of China (No.2010CB732304)
文摘The measurements of atmospheric carbonyls concentrations in Beijing were conducted from 12 July to 8 October, 2008, covering the periods of the 2008 Olympic Games and Paralympic Games. Six carbonyls, including formaldehyde, acetaldehyde, acetone, butyraldehyde, valeraldehyde, and hexaldehyde, were identified in all air samples. The total average concentrations of these carbonyls before, during, and after traffic restriction were (48.1 ± 15.2), (36.6 ± 14.5) and (23.4± 12.3) μg/m^3, respectively. Compared with the period after traffic restriction, the distinct high concentrations of the carbonyls before and during traffic restriction were primarily ascribed to the remarkable contribution of photochemical reactions. With respect to our previous investigation in the summer of 2005, the reductions of formaldehyde, acetaldehyde and acetone during traffic restriction period were about 64%, 47% and 27%, respectively, indicating that the air cleaning actions adopted by the Chinese government for the two games were efficient. The lowest levels of atmospheric carbonyls and the extremely high composition proportion of acetone after the traffic restriction were mainly attributed to the long-term effect of the control measures for the two games.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40905069), China EPA Charity Special Fund (No.201009032), and State Key Laboratory Special Fund (No. 13Z05ESPCP).
文摘Volatile organic compounds (VOCs) and carbonyl compounds were measured both indoors and outdoors in 50 residences of Beijing in heating (December, 2011) and non-heating seasons (April/May, 2012). SUMMA canisters for VOCs and diffusive samplers for carbonyl compounds were deployed for 24 h at each site, and 94 compounds were quantified. Formaldehyde, acetone and acetaldehyde were the most abundant carbonyl compounds both indoors and outdoors with indoor median concentrations being 32.1, 21.7 and 15.3 μg·m-3, respec- tively. Ethane (17.6 μg·m-3), toluene (14.4 μg·m-3), pro- pane (11.2 μg·m-3), ethene (8.40 μg·m-3), n-butane (6.87 μg·m-3), and benzene (5.95 μg·m-3) showed the high median concentrations in indoor air. Dichloromethane, p- dichlorobenzene (p-DCB) and toluene exhibited extremely high levels in some residences, which were related with a number of indoor emission sources. Moreover, isoprene, p- dichlorobenzene and carbonyls showed median indoor/ outdoor (I/O) ratios larger than 3, indicating their indoor sources were prevailing. Chlorinated compounds like CFCs were mainly from outdoor sources for their I/O ratios being less than 1. In addition, indoor concentrations between two sampling seasons varied with different compounds. Carbonyl compounds and some chlorinated compounds had higher concentrations in the non-heating season, while alkanes, alkenes, aromatic compounds showed an increase in the heating season. Indoor concentration of VOCs and carbonyls were influenced by locations, interior decorations and indoor activities, however the specific sources for indoor VOCs and carbonyls could not be easily identified. The findings obtained in this study would significantly enhance our understandings on the prevalent and abundant species of VOCs as well as their concentrations and sources in Beijing residences.
文摘In their recent Journal of Environmental Sciences publication,Wang and colleagues provide field evidence that industrial activities can contribute substantially to atmospheric carbonyl concentrations(Wang et al.,2015).These results may helpto explain underestimations of carbonyl emissions in currently available emission inventories,and highlight the need for an improved understanding of industrial sources of this class of compounds.
基金financially supported by the Shandong Provincial Natural Science Foundation(Nos.ZR2021JQ16,ZR2019YQ19and ZR2019BEM018)the Project of Shandong Province Higher Educational Science and Technology Program(No.2019KJA026)+1 种基金the National Natural Science Foundation of China(Nos.51403113 and 52072193)the Shandong Provincial College Students'Innovative Entrepreneurial Training(No.S202111065214).
文摘Aromatic carbonyls have evoked sustained attention in the field of room-temperature phosphorescence(RTP).The introduction of carbonyl groups is a general way to achieve RTP for their effective intersystem crossing(ISC)by improving spin-orbit coupling(SOC).With further molecular design and processing strategies,aromatic carbonyls materials with multi-functional and high efficiency ultralong organic phosphorescence(UOP)can be obtained.This review summarizes the mechanism of aromatic carbonyls with UOP in pure aromatic carbonyls and their multi-component systems.Some detailed strategies for improving UOP performance are further introduced.The summary and outlook are presented to expound on the advances and lack of aromatic carbonyls.Further development directions and requirements are also put forward.
基金support from the National Natural Science Foundation of China(21976054,22176054)the Fundamental Research Funds for the Central Universities(2020MS036,FRF-TP-20-005A3)+1 种基金the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange&Growth Program(QNXM20220026)MOE Key Laboratory of Resources and Environmental System Optimization,College of Environmental Science and Engineering,North China Electric Power University(KLRE-KF202201)。
文摘Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion approaches via photo-,electro-,and photoelectro-catalysis to oxidize alcohols into high value-added corresponding carbonyl compounds as well as the possible simultaneous production of clean fuel hydrogen(H_(2))under mild conditions are promising to substitute the traditional approach to form greener and sustainable reaction systems and thus have aroused tremendous investigations.In this review,the state-of-the-art photocatalytic,electrocatalytic,and photoelectrocatalytic strategies for selective oxidation of different types of alcohols(aromatic and aliphatic alcohols,single alcohol,and polyols,etc.)as well as the simultaneous production of H_(2) in certain systems are discussed.The design of photocatalysts,electrocatalysts,and photoelectrocatalysts as well as reaction mechanism is summarized and discussed in detail.In the end,current challenges and future research directions are proposed.It is expected that this review will not only deepen the understanding of environmentally friendly catalytic systems for alcohol conversion as well as H_(2) production,but also enlighten significance and inspirations for the follow-up study of selective oxidation of various types of organic molecules to value-added chemicals.
基金Financial support from National Natural Science Foundation of China (22078336, U1662133, 21773158, 22008238)Innovation Academy for Green Manufacture, CAS (IAGM2020C13) is gratefully acknowledged
文摘The Ru-catalyzed carbonylation of alkenes with CO_(2)as a C1 surrogate and imidazole chlorides as the promotor is investigated by a combination of computational and experimental study.The conversion rate of CO_(2)to CO is positively correlated with the efficiency of both hydroesterification and hydroformylation,which is found facilitated in the presence of chloride additives with a decreasing order of BmimCl~B3MimCl>BmmimCl~LiCl.Taking the hydroesterification with MeOH as a representative example,BmimCl bearing C-H functionality at the C^(2)site of the cation assists the reduction of CO_(2)to CO as a hydrogen donor medium,with the anion and cation acting in a synergistic fashion.Subsequent insertion of CO_(2)into the formed Ru-H bond with the assistance of chloride anion produces the Ru-COOH species,which ultimately accelerates the activation of CO_(2).
文摘The paper explores the possibilities of using carbonyl iron in the form of a powder for the manufacture of radar-absorbing paints-reducing the radar signature of the objects that they cover.The attenuation values in the range of 4-18 GHz for various coating thicknesses,ranging from 0.5 to 2.00 mm with 0.5 mm increment,and for different absorber content-75%and 80%,as well as the use of two different binders in the form of epoxy resins with hardeners,were investigated.For the frequency of 18 GHz and a 1.5 mm thick coating with a 75%absorber content,Epidian 112 resin and Saduramid 10/50 hardener used as a binder,and the maximum attenuation level obtained equalled 20.2 d B at 16 GHz.Additionally,the absorber particle size ranging from 3 to 4μm and its higher mass content resulted in achieving the reflection loss above-12 d B in the entire 8-12.5 GHz range for layers between 1-and 1.5 mm thickness.The qualitative assessment of the tested samples in the context of camouflage in the radar range was also performed,using statistical analysis.
基金the financial support from Dalian Institute of Chemical Physics (DMTO201604)Focus Area Innovation Team Support Plan of Dalian (2021RT03)+1 种基金National Natural Science Foundation of China (21878284)Regional Development Young Scholars of the Chinese Academy of Sciences。
文摘Membrane contactor is regarded as a promising method for reaction and process intensification. The feasibility of formaldehyde carbonylation to synthesize glycolic acid using polytetrafluoroethylene(PTFE)membrane contactor has been proved in our previous study. In this paper, the effect of membrane microstructure on process performance was further investigated. Three porous PTFE hollow fibers with different pore sizes and one polydimethylsiloxane(PDMS)/PTFE composite membrane with dense layer were fabricated for comparison. The physical and chemical properties of four membranes, including chemical composition, morphology, contact angle, liquid entry pressure, thermodynamic analysis and gas permeability, were systemically characterized. Experiments of formaldehyde carbonylation under different reaction conditions were conducted. The results indicated that the yield of glycolic acid increased with decreasing pore size for porous membranes, which was due to the improvement of wetting behavior. The dense layer of PDMS in composite hollow fiber could effectively prevent the solvent from entering membrane pores, thus the membrane exhibited the best performance. At reaction temperature of 120℃ and operation pressure of 3.0 MPa, the yield of glycolic acid was always higher than 90% as the mass ratio of trioxane and phosphotungstic acid increased from 0.2:1 to 0.8:1. The highest turnover frequency was up to 26.37 mol·g^(-1)·h^(-1). This study provided a reference for the understanding and optimization of membrane contactors for the synthesis of glycolic acid using solvent with low surface tension.