The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study sel...The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study selected polycaprolactone blended with carboxymethylcellulose that is the additive.The ratios of them were derived from mixture design in Minitab program that was 98/2(P1),93.5/6.5(P2),89/11(P3),84.5/15.5(P4),and 80/20(P5),respectively.The scanning electron microscopy(SEM)was applied to assess the physical properties and the pore size dimension of the scaffold from SEM micrographs.The results of SEM present the scaffolds happened interconnected porous structures that are found in all of the P1-P5 samples.The pore size dimension of all sample scaffolds is in the range of 264.11-348.28μm.Whereas the largest and the smallest of pore size are the sample of P3 and P2,respectively,while the porosity ranges from 98.06%-98.88%that the sample of P5 is the greatest and the sample of P4 is the slightly lowest.In conclusion,the blended PCL/CMC scaffolds P1-P5 were formed by salt leaching technique suitable to use in tissue engineering application.However,the amount of CMC blended with PCL should be reasonable in order to adjust the hydrophilic of the scaffold.展开更多
Stable silver nanoparticles in a sodium-carboxymethylcellulose hydrogel with a substitution degree of 0.65 - 0.85 and polymerization degree of 200 - 600 have been synthesized. Physical, chemical properties and antimic...Stable silver nanoparticles in a sodium-carboxymethylcellulose hydrogel with a substitution degree of 0.65 - 0.85 and polymerization degree of 200 - 600 have been synthesized. Physical, chemical properties and antimicrobial activity of sodium-carboxymethylcellulose hydrogels contained silver nanoparticles were studied. The shape, number and size of silver nanoparticles (SNP) incorporated into the structure of hydrogels of sodium-carboxymethylcellulose were studied by using UV-VIS spectroscopy, transmission electron and atomic force microscopy. It was found that the silver nitrate concentration increase in sodium-carboxymethylcellulose solutions, as well as photoirradiation of the hydrogel lead to the changes of the silver nanoparticles size and shape. The studies have shown that the spherical silver nanoparticles of 5 - 35 nm in the structure of sodium-carboxymethylcellulose hydrogel possess high bactericidal activity. Our results have shown that changing of size and shape of silver nanoparticles contributes to appearance of their biological activity.展开更多
A novel ZIF-8-CMC hybrid material was fabricated from the hybridization of ZIF-8 and carboxymethylcellulose(CMC) by impregnation method for n-hexane/3-methylpentane separation.The surface properties of ZIF-8 were tail...A novel ZIF-8-CMC hybrid material was fabricated from the hybridization of ZIF-8 and carboxymethylcellulose(CMC) by impregnation method for n-hexane/3-methylpentane separation.The surface properties of ZIF-8 were tailored by introducing CMC into ZIF-8 nanoparticles.In this work,adsorption separation of n-hexane(nHEX) and 3-methylpentane(3 MP) on ZIF-8-CMC were investigated by batch vapor-phase adsorption and liquid-phase breakthrough adsorption.The adsorption selectivity of nHEX/3 MP reversed from preferable adsorption of nHEX to preferable adsorption of 3 MP upon the increasing of CMC containing in the hybrid materials.As the temperature increases,the adsorption amounts of nHEX and 3 MP decrease.With the increasing of CMC contents,the nHEX uptake decreased,the uptake capacity of 3 MP increased gradually.For liquid-phase breakthrough adsorption,the dynamic adsorption capacity of nHEX also decreased with the increasing of temperature.展开更多
利用气凝胶模板法可间接制备油凝胶,该方法具有制备简单、性能优异等优点而被广泛关注。本研究通过静电相互作用制备了羧甲基纤维素钠(carboxy methyl cellulose-Na,CMC-Na)/大豆分离蛋白(soybean protein isolate,SPI)复合气凝胶,探究...利用气凝胶模板法可间接制备油凝胶,该方法具有制备简单、性能优异等优点而被广泛关注。本研究通过静电相互作用制备了羧甲基纤维素钠(carboxy methyl cellulose-Na,CMC-Na)/大豆分离蛋白(soybean protein isolate,SPI)复合气凝胶,探究不同蛋白含量对气凝胶平均粒径、微观结构、红外光谱、吸油动力学、吸油和持油能力的影响。并基于气凝胶模板制备油凝胶,对其质构性能、抑菌性能以及贮藏稳定性进行表征。结果表明,SPI和CMC-Na依靠静电吸附形成了稳定的复合物,平均粒径随着蛋白含量的增加而增大。复合气凝胶显示出更加致密的多孔网络结构,持油能力得到增强,但不利于吸油性能的改善。同时,蛋白的加入提高了油凝胶的强度,增加了杨氏模量,并改善了油凝胶的抑菌效果和贮藏稳定性。因此,气凝胶模板法可视为制备油凝胶的良好方法,并且基于多糖蛋白静电吸附可以制备稳定的油凝胶体系。展开更多
文摘The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study selected polycaprolactone blended with carboxymethylcellulose that is the additive.The ratios of them were derived from mixture design in Minitab program that was 98/2(P1),93.5/6.5(P2),89/11(P3),84.5/15.5(P4),and 80/20(P5),respectively.The scanning electron microscopy(SEM)was applied to assess the physical properties and the pore size dimension of the scaffold from SEM micrographs.The results of SEM present the scaffolds happened interconnected porous structures that are found in all of the P1-P5 samples.The pore size dimension of all sample scaffolds is in the range of 264.11-348.28μm.Whereas the largest and the smallest of pore size are the sample of P3 and P2,respectively,while the porosity ranges from 98.06%-98.88%that the sample of P5 is the greatest and the sample of P4 is the slightly lowest.In conclusion,the blended PCL/CMC scaffolds P1-P5 were formed by salt leaching technique suitable to use in tissue engineering application.However,the amount of CMC blended with PCL should be reasonable in order to adjust the hydrophilic of the scaffold.
文摘Stable silver nanoparticles in a sodium-carboxymethylcellulose hydrogel with a substitution degree of 0.65 - 0.85 and polymerization degree of 200 - 600 have been synthesized. Physical, chemical properties and antimicrobial activity of sodium-carboxymethylcellulose hydrogels contained silver nanoparticles were studied. The shape, number and size of silver nanoparticles (SNP) incorporated into the structure of hydrogels of sodium-carboxymethylcellulose were studied by using UV-VIS spectroscopy, transmission electron and atomic force microscopy. It was found that the silver nitrate concentration increase in sodium-carboxymethylcellulose solutions, as well as photoirradiation of the hydrogel lead to the changes of the silver nanoparticles size and shape. The studies have shown that the spherical silver nanoparticles of 5 - 35 nm in the structure of sodium-carboxymethylcellulose hydrogel possess high bactericidal activity. Our results have shown that changing of size and shape of silver nanoparticles contributes to appearance of their biological activity.
基金supported by the National Natural Science Foundation of China (Nos. 11775037 and 21676030)the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM212110)The Postgraduate Innovation Project of Changzhou University (KYCX19_1782)。
文摘A novel ZIF-8-CMC hybrid material was fabricated from the hybridization of ZIF-8 and carboxymethylcellulose(CMC) by impregnation method for n-hexane/3-methylpentane separation.The surface properties of ZIF-8 were tailored by introducing CMC into ZIF-8 nanoparticles.In this work,adsorption separation of n-hexane(nHEX) and 3-methylpentane(3 MP) on ZIF-8-CMC were investigated by batch vapor-phase adsorption and liquid-phase breakthrough adsorption.The adsorption selectivity of nHEX/3 MP reversed from preferable adsorption of nHEX to preferable adsorption of 3 MP upon the increasing of CMC containing in the hybrid materials.As the temperature increases,the adsorption amounts of nHEX and 3 MP decrease.With the increasing of CMC contents,the nHEX uptake decreased,the uptake capacity of 3 MP increased gradually.For liquid-phase breakthrough adsorption,the dynamic adsorption capacity of nHEX also decreased with the increasing of temperature.
文摘利用气凝胶模板法可间接制备油凝胶,该方法具有制备简单、性能优异等优点而被广泛关注。本研究通过静电相互作用制备了羧甲基纤维素钠(carboxy methyl cellulose-Na,CMC-Na)/大豆分离蛋白(soybean protein isolate,SPI)复合气凝胶,探究不同蛋白含量对气凝胶平均粒径、微观结构、红外光谱、吸油动力学、吸油和持油能力的影响。并基于气凝胶模板制备油凝胶,对其质构性能、抑菌性能以及贮藏稳定性进行表征。结果表明,SPI和CMC-Na依靠静电吸附形成了稳定的复合物,平均粒径随着蛋白含量的增加而增大。复合气凝胶显示出更加致密的多孔网络结构,持油能力得到增强,但不利于吸油性能的改善。同时,蛋白的加入提高了油凝胶的强度,增加了杨氏模量,并改善了油凝胶的抑菌效果和贮藏稳定性。因此,气凝胶模板法可视为制备油凝胶的良好方法,并且基于多糖蛋白静电吸附可以制备稳定的油凝胶体系。